A Minimal representation of MAPs

Sunkyo Kim, School of Business, Ajou University

Ajou University, Suwon, Korea

Apr. 5, 2019

Representation/parameter(s) of random variables

- \blacktriangleright Uniform(a,b): Lower and upper bounds
- ightharpoonup Binomial(n, p): number of trials and P(success for a trial)
- ightharpoonup Geometric(p): P(success for a trial)
- ▶ Poisson(λ): (Average) rate of occurrence
- \triangleright Exponential(λ): 1/survival time
- ▶ $N(\mu, \sigma^2)$: First two centered-moments (Mean and variance)
- ightharpoonup Hypergeometric(N, M, n)
- \Rightarrow All of above are minimal representations.

Laplace transform of random variables

(LT of the random variable and prob. density function) Let X be a non-negative real-valued r.v. with pdf $f_X(x)$. Then, the LT of the r.v. X, and also the LT of the f(x), is

$$E(e^{-sX}) \equiv \tilde{f}(s) = \int_0^\infty e^{-st} f(t) dt$$

(Moments of X)

$$E(X^n) \equiv \frac{d^n}{ds^n} \tilde{f}(s) \bigg|_{s=0}$$

► $X \sim \text{Exponential}(\lambda), X \geq 0$

$$f(x) = \lambda e^{-\lambda x} \Rightarrow \tilde{f}(s) = \frac{\lambda}{\lambda + s} \Rightarrow \mathrm{E}(X^n) = n!/\lambda^n$$

Representation/parameter(s) of stochastic processes

- ▶ Poisson process(λ): i.i.d. exponential(λ) intervals
- ▶ Birth process($\lambda_0, \lambda_1, ...$): birth rates at each state
- ▶ Birth and death process($(\lambda_0, \mu_1), (\lambda_1, \mu_2), ...$): birth/death rates
- ▶ Renewal process: i.i.d. intervals

(Markov process/chain)

- ▶ Discrete-time Markov chain: 1-step transition matrix $\mathbf{P}^{n \times n}$
- ightharpoonup Continuous-time Markov chain: infinitesimal generator $\mathbf{Q}^{n\times n}$
 - inter-event time in state $i \sim \text{exponential}(\lambda_i)$
 - ▶ inter-event time and the next state are independent
- ► Semi-Markov process
 - generalization of CTMC with non-exponential sojourn times

Figure: Categories of stochastic processes*

*Originally from Queueing Systems, Volume I: Theory by L. Kleinrock. Adapted by RK available at https://radhakrishna.typepad.com/queueing-systems.pdf

(5/24)

Overview

- ightharpoonup MAP(n): Markovian arrival process of order n,
 - ightharpoonup A composite of n Poisson processes
 - ▶ The minimal number of parameters: n^2
- ▶ Representations of MAPs
 - ▶ Markovian representation: $(\mathbf{D}_0, \mathbf{D}_1)$
 - ightharpoonup Moments' representation: n^2 moments
 - ▶ Laplace transform (LT) representation
 - ightharpoonup Jordan representation: (\mathbf{E}, \mathbf{R})
 - ▶ Minimal realization problem (MRP) representation: $(\mathbf{K}', \mathbf{R}')$
 - Characteristic polynomial representation
- ► LT of stationary intervals
 - ightharpoonup A MAP(n) is fully described by a lag-1 joint LT
 - ▶ A rational function with $n^2 + n$ coefficients.
- ▶ Main result: Lag-1 joint LT can be written in n^2 parameters.

Markovian arrival processes

- ▶ How does an arrival takes place in MAP(n)s?
 - \blacktriangleright At any time point, the MAP(n) is in one of n phases.
 - ▶ Rate matrices $(\mathbf{D}_0, \mathbf{D}_1)$ governs transitions between phases
 - ▶ \mathbf{D}_1 is the rate matrix generating arrivals (and transitions if any).
 - ▶ Off-diagonal entries of \mathbf{D}_0 are transition rates without arrivals.
- ▶ Markovian representation of a MAP(2) with 6 rate parameters.

$$\mathbf{D}_{0} = \begin{bmatrix} -\lambda_{11} - \lambda_{12} - \sigma_{12} & \sigma_{12} \\ \sigma_{21} & -\lambda_{21} - \lambda_{22} - \sigma_{21} \end{bmatrix}, \mathbf{D}_{1} = \begin{bmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{bmatrix}$$

 $\mathbf{Q} \equiv \mathbf{D}_0 + \mathbf{D}_1$ is the infinitesimal generator for the CTMC.

- ► Special cases of MAPs
 - Poisson processes: exponential inter-arrival times
 - ▶ Erlang distribution and hyper-exponential distribution
 - ► Markov-modulated Poisson processes (MMPP)

Markovian arrival processes: MAP(2)

▶ Infinitesimal generator for the CTMC and transition diagram

$$\mathbf{Q} \equiv \mathbf{D}_0 + \mathbf{D}_1 = \begin{bmatrix} -\sigma_{12} - \lambda_{12} & \sigma_{12} + \lambda_{12} \\ \sigma_{21} + \lambda_{21} & -\sigma_{21} - \lambda_{21} \end{bmatrix},$$

- ▶ Transition rate from phase 1 to 2: $\lambda_{12} + \sigma_{12}$
- ▶ Transition rate from phase 2 to 1: $\lambda_{21} + \sigma_{21}$
- Arrival rate in phase 1: $\lambda_{11} + \lambda_{12}$
- ▶ Arrival rate in phase 2: $\lambda_{21} + \lambda_{22}$

Representations of MAP(n)s

- ▶ Markovian representation: $(\mathbf{D}_0, \mathbf{D}_1)$ matrices
 - ▶ A MAP(n) is described by two $n \times n$ transition rate matrices
 - ▶ $2n^2 n$ parameters \Rightarrow redundant (not minimal)!!!
 - Real-valued and straightforward
 - Not unique
- \blacktriangleright Moments' representation: n^2 moments
 - ▶ 2n-1 marginal moments
 - $(n-1)^2$ joint moments
 - ▶ Real-valued, minimal, and unique
 - ▶ Not straightforward \Rightarrow Existence of a feasible ($\mathbf{D}_0, \mathbf{D}_1$)?
- ▶ LT representation: a rational function with $n^2 + n$ coefficients
 - ightharpoonup A MAP(n) is fully described by a lag-1 joint LT
 - Real-valued and unique but not minimal
 - Not straightforward

(Question) Can we write lag-1 joint LT in terms of n^2 parameters?

Markovian representation $(\mathbf{D}_0, \mathbf{D}_1)$ of MAP(3)s

$$\mathbf{D}_0 = \left[\begin{array}{ccc} -\sigma_1 - \lambda_1 & \sigma_{12} & \sigma_{13} \\ \sigma_{21} & -\sigma_2 - \lambda_2 & \sigma_{23} \\ \sigma_{31} & \sigma_{32} & -\sigma_3 - \lambda_3 \end{array} \right], \ \mathbf{D}_1 = \left[\begin{array}{ccc} \lambda_{11} & \lambda_{12} & \lambda_{13} \\ \lambda_{21} & \lambda_{22} & \lambda_{23} \\ \lambda_{31} & \lambda_{32} & \lambda_{33} \end{array} \right]$$

with infinitesimal generator for the CTMC

$$\mathbf{Q} = \begin{bmatrix} -\sigma_1 - \bar{\lambda}_1 & \lambda_{12} + \sigma_{12} & \lambda_{13} + \sigma_{13} \\ \lambda_{21} + \sigma_{21} & -\sigma_2 - \bar{\lambda}_2 & \lambda_{23} + \sigma_{23} \\ \lambda_{31} + \sigma_{31} & \lambda_{32} + \sigma_{32} & -\sigma_3 - \bar{\lambda}_3 \end{bmatrix}$$

where
$$\sigma_i = \sum_{j \neq i} \sigma_{ij}, \lambda_i = \sum_{j=1}^3 \lambda_{ij}, \bar{\lambda}_i = \sum_{j \neq i} \lambda_{ij}$$
.

- ▶ 6+9 = 15 rate parameters in $(\mathbf{D}_0, \mathbf{D}_1)$.
- ▶ Minimal number of parameters for MAP(3) is $3^2 = 9$.

Markovian representation $(\mathbf{D}_0, \mathbf{D}_1)$ of MAP(n)s

$$\mathbf{D}_{0} = \begin{bmatrix} -\lambda_{1} - \sigma_{1} & \sigma_{1,2} & \cdots & \sigma_{1,n-1} & \sigma_{1,n} \\ \sigma_{2,1} & -\lambda_{2} - \sigma_{2} & \cdots & \sigma_{2,n-1} & \sigma_{2,n} \\ \vdots & & \ddots & & \vdots \\ \sigma_{n-1,1} & \sigma_{n-1,2} & \cdots & -\lambda_{n-1} - \sigma_{n-1} & \sigma_{n-1,n} \\ \sigma_{n,1} & \sigma_{n,2} & \cdots & \sigma_{n,n-1} & -\lambda_{n} - \sigma_{n} \end{bmatrix},$$

$$\mathbf{D}_{1} = \begin{bmatrix} \lambda_{11} & \lambda_{12} & \cdots & \lambda_{1,n} \\ \lambda_{21} & \lambda_{22} & \cdots & \lambda_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_{n,1} & \lambda_{n,2} & \cdots & \lambda_{n,n} \end{bmatrix},$$

where $\lambda_i = \sum_{j=1}^n \lambda_{ij}$ and $\sigma_i = \sum_{j=1, j \neq i}^n \sigma_{ij}$.

- ▶ $2n^2 n$ rate parameters in $(\mathbf{D}_0, \mathbf{D}_1)$.
- ▶ Minimal number of parameters for MAP(n) is n^2 .

Characteristic polynomial equations

(Characteristic polynomial equation of \mathbf{D}_0 and \mathbf{Q})

$$|s\mathbf{I} - \mathbf{D}_0| = s^n + a_{n-1}s^{n-1} + \dots + a_1s + a_0$$

$$|s\mathbf{I} - \mathbf{Q}| = s^n + \Sigma_{n-1}s^{n-1} + \dots + \Sigma_1 s$$

(Coefficients of characteristic polynomial equations)

$$a_0 = (-1)^n |\mathbf{D}_0| = |-\mathbf{D}_0|$$

- $a_{n-1} = \operatorname{Trace}(-\mathbf{D}_0)$
- $|\mathbf{Q}| = 0 \Rightarrow \text{Constant term} = 0$
- $\Sigma_{n-1} = \operatorname{Trace}(-\mathbf{Q})$
- $\Sigma_1 = \bar{q}_1 + \bar{q}_2 + \cdots + \bar{q}_n$ where $\bar{q} = (\bar{q}_1, \bar{q}_2, ..., \bar{q}_n)$ is the vector of $(n-1) \times (n-1)$ principal minors of matrix \mathbf{Q}

Steady-state probability vectors of MAP(n)'s

(Stationary prob. vector $\boldsymbol{\pi}$ for CTMC with \mathbf{Q})

- $ightharpoonup \pi \mathbf{Q} = \mathbf{0} \text{ and } \pi e = 1$
- $\mathbf{r} = \bar{\mathbf{q}}/\Sigma_1$
- $(\mathbf{D}_0 + \mathbf{D}_1)e = \mathbf{Q}e = \mathbf{0} \Rightarrow -\mathbf{D}_0e = \mathbf{D}_1e.$
- Arrival rate: $\lambda_A \equiv \pi \mathbf{D}_1 e$

(Stationary prob. vector \boldsymbol{p} for embedded DTMC \mathbf{P})

- $P = -\mathbf{D}_0^{-1}\mathbf{D}_1$
- ▶ p = pP and pe = 1
- $p = \pi \mathbf{D}_1 / \lambda_A$

Adjoint/adjugate/adjunct matrix

For an $n \times n$ matrix \mathbf{A} ,

- ▶ The minor, M_{ij} , is the determinant of an $(n-1) \times (n-1)$ matrix obtained from **A** by deleting *i*-th row and *j*-th column.
- ▶ The cofactor: $C_{ij} = (-1)^{i+j} M_{ij}$.
- ▶ The cofactor matrix: $\mathbf{C} = [C_{ij}] = [(-1)^{i+j} M_{ij}]$
- ▶ The adjoint matrix: $Adj(\mathbf{A}) = \mathbf{C}^T$.

(Example)

$$\mathbf{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}, \mathbf{C} = \begin{pmatrix} M_{11} & -M_{12} & M_{13} \\ -M_{21} & M_{22} & -M_{23} \\ M_{31} & -M_{32} & M_{33} \end{pmatrix},$$

$$M_{12} = \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}, C_{12} = (-1)^{1+2} M_{12} = - \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix}.$$

Adjoint/adjugate/adjunct matrix

$$\operatorname{Adj}(\mathbf{A}) = \mathbf{C}^{T} = \begin{pmatrix} M_{11} & -M_{21} & M_{31} \\ -M_{12} & M_{22} & -M_{32} \\ M_{13} & -M_{23} & M_{33} \end{pmatrix}$$

$$= \begin{pmatrix} +\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} & -\begin{vmatrix} a_{12} & a_{13} \\ a_{32} & a_{33} \end{vmatrix} & +\begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix}$$

$$-\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} & +\begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{33} \end{vmatrix} & -\begin{vmatrix} a_{11} & a_{13} \\ a_{31} & a_{32} \end{vmatrix}$$

$$+\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} & -\begin{vmatrix} a_{11} & a_{12} \\ a_{31} & a_{32} \end{vmatrix} & +\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

$$Adj(s\mathbf{I} - \mathbf{A}) = ?$$

Cayley-Hamilton theorem

(Cayley-Hamilton) For an $n \times n$ matrix **D** with characteristic polynomial equation $|s\mathbf{I} - \mathbf{D}| = s^n + a_{n-1}s^{n-1} + \cdots + a_1s + a_0$,

$$\mathbf{D}^n + a_{n-1}\mathbf{D}^{n-1} + \dots + a_1\mathbf{D} + a_0\mathbf{I} = \mathbf{0}.$$

(Def)
$$\mathbf{C}_k \equiv \sum_{i=0}^{n-2-k} a_{k+i+1} \mathbf{D}_0^i + \mathbf{D}_0^{n-k-1} \text{ for } 0 \le k \le n-2$$

- $\mathbf{C}_0 = a_1 \mathbf{I} + a_2 \mathbf{D}_0 + \dots + a_{n-1} \mathbf{D}_0^{n-2} + \mathbf{D}_0^{n-1}$
- $-\mathbf{D}_0 \mathbf{C}_0 = -a_1 \mathbf{D}_0 a_2 \mathbf{D}_0^2 \dots a_{n-1} \mathbf{D}_0^{n-1} \mathbf{D}_0^n = a_0 \mathbf{I}$
- $\mathbf{C}_0 = \mathrm{Adj}(-\mathbf{D}_0) \qquad \qquad :: -\mathbf{D}_0 \mathrm{Adj}(-\mathbf{D}_0) = |-\mathbf{D}_0| \mathbf{I} = a_0 \mathbf{I}$
- ▶ Set $C_{n-1} \equiv I$ and $C_n \equiv 0$.

A minimal LT representation of MAP(n)s

(Claim) The lag-1 joint LT of MAP(n)s can be written in terms of n^2 parameters $(\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c})$

- ▶ $a = (a_0, a_1, ..., a_{n-1})$: coefficients of $|s\mathbf{I} \mathbf{D}_0|$
- ▶ $b = (b_1, b_2, ..., b_{n-1})$: $b_k \equiv p\mathbf{C}_k\mathbf{D}_1e$ for $1 \le k \le n-1$.
- $ightharpoonup c = (c_{11}, ..., c_{n-1,n-1}): c_{ij} = pC_iD_1C_jD_1e \text{ for } i, j = 1, ..., n-1$
- $n + (n-1) + (n-1)^2 = n^2$ parameters

Since $\mathbf{C}_{n-1} \equiv \mathbf{I}$,

$$c_{i,n-1} = \mathbf{p}\mathbf{C}_i\mathbf{D}_1^2\mathbf{e},$$

 $c_{n-1,j} = \mathbf{p}\mathbf{D}_1\mathbf{C}_j\mathbf{D}_1\mathbf{e},$
 $c_{n-1,n-1} = \mathbf{p}\mathbf{D}_1^2\mathbf{e}.$

Constant term in the LT and $Adj(s\mathbf{I} - \mathbf{D}_0)$

(**Lemma 1**) For MAP(n)s with $(\mathbf{D}_0, \mathbf{D}_1)$ and $\mathbf{C}_0 \equiv \mathrm{Adj}(-\mathbf{D}_0)$,

$$egin{aligned} \mathbf{p}\mathbf{C}_0\mathbf{D}_1 &= |-\mathbf{D}_0|\mathbf{p},\ \mathbf{C}_0\mathbf{D}_1\mathbf{e} &= |-\mathbf{D}_0|\mathbf{e}. \end{aligned}$$

(Lemma 2)

$$Adj(s\mathbf{I} - \mathbf{D}_0) \equiv \sum_{i=0}^{n-1} \sum_{i=0}^{n-j-1} a_{i+j+1} s^i \mathbf{D}_0^i = \sum_{i=0}^{n-1} s^i \mathbf{C}_i.$$

By Lemma 1,

$$egin{aligned} & oldsymbol{p} \mathbf{C}_0 \mathbf{D}_1 oldsymbol{e} = |-\mathbf{D}_0| oldsymbol{p} oldsymbol{e} = a_0, \ & oldsymbol{p} \mathbf{C}_0 \mathbf{D}_1 \mathbf{C}_0 \mathbf{D}_1 oldsymbol{e} = |-\mathbf{D}_0|^2 oldsymbol{p} oldsymbol{e} = a_0^2. \end{aligned}$$

Constant term in the LT and $Adj(s\mathbf{I} - \mathbf{D}_0)$

(Proof of Lemma 1) Since
$$\mathbf{P} \equiv (-\mathbf{D}_0)^{-1}\mathbf{D}_1$$
 and $\mathbf{p} = \mathbf{p}\mathbf{P}$,

$$p\mathbf{C}_0\mathbf{D}_1 = p\mathbf{A}\mathbf{d}\mathbf{j}(-\mathbf{D}_0)\mathbf{D}_1 = p|-\mathbf{D}_0|(-\mathbf{D}_0)^{-1}\mathbf{D}_1 = |-\mathbf{D}_0|p.$$

Since $\mathbf{Q} \equiv \mathbf{D}_0 + \mathbf{D}_1$ and $\mathbf{Q}e = \mathbf{0}$, we have $\mathbf{D}_1e = -\mathbf{D}_0e$ and

$$\mathbf{C}_0\mathbf{D}_1e = \mathrm{Adj}(-\mathbf{D}_0)(-\mathbf{D}_0)e = |-\mathbf{D}_0|e.$$

Marginal and joint LT of MAP(2) stationary intervals

$$\mathbf{D}_{0} = \begin{bmatrix} -\lambda_{1} - \sigma_{1} & \sigma_{1} \\ \sigma_{2} & -\lambda_{2} - \sigma_{2} \end{bmatrix}, \mathbf{D}_{1} = \begin{bmatrix} \lambda_{11} & \lambda_{12} \\ \lambda_{21} & \lambda_{22} \end{bmatrix},$$

$$\mathbf{Q} = \begin{bmatrix} -\sigma_{1} - \lambda_{12} & \sigma_{1} + \lambda_{12} \\ \sigma_{2} + \lambda_{21} & -\sigma_{2} - \lambda_{21} \end{bmatrix},$$

where $\lambda_i = \lambda_{i1} + \lambda_{i2}$.

$$\tilde{f}(s) = \mathbf{p}(s\mathbf{I} - \mathbf{D}_0)^{-1}\mathbf{D}_1\mathbf{e}
= \frac{b_1s + a_0}{s^2 + a_1s + a_0},
\tilde{f}(s,t) = \mathbf{p}(s\mathbf{I} - \mathbf{D}_0)^{-1}\mathbf{D}_1(t\mathbf{I} - \mathbf{D}_0)^{-1}\mathbf{D}_1\mathbf{e}
= \frac{c_{11}st + a_0b_1(s+t) + a_0^2}{(s^2 + a_1s + a_0)(t^2 + a_1t + a_0)}.$$

Marginal LT of MAP(n) inter-arrival times

(**Proposition 1**) The marginal LT of the stationary interval T of a MAP(n) is

$$\tilde{f}(s) = \frac{b_{n-1}s^{n-1} + \dots + b_2s^2 + b_1s + a_0}{s^n + a_{n-1}s^{n-1} + \dots + a_2s^2 + a_1s + a_0}.$$

Proof

$$\tilde{f}(s) \equiv \mathbf{E}(e^{-sT}) = \mathbf{p}(s\mathbf{I} - \mathbf{D}_0)^{-1}\mathbf{D}_1\mathbf{e}$$

$$= \frac{\mathbf{p}\mathbf{A}\mathbf{d}\mathbf{j}(s\mathbf{I} - \mathbf{D}_0)\mathbf{D}_1\mathbf{e}}{|s\mathbf{I} - \mathbf{D}_0|} = \frac{\mathbf{p}\sum_{k=0}^{n-1} s^k \mathbf{C}_k \mathbf{D}_1\mathbf{e}}{|s\mathbf{I} - \mathbf{D}_0|}$$

since $p\mathbf{C}_0\mathbf{D}_1\mathbf{e} = a_0$ and $p\mathbf{C}_k\mathbf{D}_1\mathbf{e} = b_k$ for $1 \le k \le n-1$.

Lag-1 joint LT of MAP(n) interarrival times

(**Proposition 2**) The joint LT of two consecutive stationary intervals (T_1, T_2) of a MAP(n) is

$$\tilde{f}(s,t) = \frac{\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} c_{ij} s^i t^j + a_0 \sum_{i=1}^{n-1} b_i (s^i + t^i) + a_0^2}{\left(s^n + \sum_{i=0}^{n-1} a_i s^i\right) \left(t^n + \sum_{i=0}^{n-1} a_i t^i\right)}.$$

Proof

$$\tilde{f}(s,t) \equiv \mathbf{E}(e^{-sT_1}e^{-tT_2}) = \mathbf{p}(s\mathbf{I} - \mathbf{D}_0)^{-1}\mathbf{D}_1(t\mathbf{I} - \mathbf{D}_0)^{-1}\mathbf{D}_1\mathbf{e}
= \frac{\mathbf{p}\mathrm{Adj}(s\mathbf{I} - \mathbf{D}_0)\mathbf{D}_1\mathrm{Adj}(t\mathbf{I} - \mathbf{D}_0)\mathbf{D}_1\mathbf{e}}{|s\mathbf{I} - \mathbf{D}_0||t\mathbf{I} - \mathbf{D}_0|}$$

Lag-1 joint LT of MAP(n) interarrival times

(Proof continued) The numerator can be written as

$$\begin{aligned} & p\left(\sum_{i=0}^{n-1} s^i \mathbf{C}_i\right) \mathbf{D}_1 \left(\sum_{i=0}^{n-1} t^i \mathbf{C}_i\right) \mathbf{D}_1 \boldsymbol{e} \\ & = p \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \mathbf{C}_i \mathbf{D}_1 \mathbf{C}_j \mathbf{D}_1 \boldsymbol{e} s^i t^j + p \sum_{i=1}^{n-1} (\mathbf{C}_i \mathbf{D}_1 \mathbf{C}_0 \mathbf{D}_1 s^i + \mathbf{C}_0 \mathbf{D}_1 \mathbf{C}_i \mathbf{D}_1 t^i) \boldsymbol{e} \\ & + p \mathbf{C}_0 \mathbf{D}_1 \mathbf{C}_0 \mathbf{D}_1 \boldsymbol{e} \\ & = \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} c_{ij} s^i t^j + a_0 \sum_{i=1}^{n-1} b_i (s^i + t^i) + a_0^2 \end{aligned}$$

since $c_{ij} \equiv p\mathbf{C}_i\mathbf{D}_1\mathbf{C}_j\mathbf{D}_1e$ and $p\mathbf{C}_i\mathbf{D}_1\mathbf{C}_0\mathbf{D}_1e = p\mathbf{C}_0\mathbf{D}_1\mathbf{C}_i\mathbf{D}_1e = a_0b_i$.

Conclusion

- ▶ Markovian representation: $(\mathbf{D}_0, \mathbf{D}_1)$
 - Real-valued and straightforward
 - Redundant (not minimal) and not unique
- \blacktriangleright Moments' representation: n^2 moments
 - ▶ 2n-1 marginal moments and $(n-1)^2$ joint moments
 - ▶ Real-valued, minimal, and unique
 - ▶ Not straightforward \Rightarrow Existence of a feasible $(\mathbf{D}_0, \mathbf{D}_1)$?
- ▶ LT representation: a rational function with $n^2 + n$ coefficients
 - ightharpoonup A MAP(n) is fully described by a lag-1 joint LT
 - ► Real-valued and unique
 - Not straightforward

(Main result)

▶ $n^2 + n$ coefficients in the Lag-1 joint LT can be written in terms of n^2 parameters. \Rightarrow A minimal representation!