A Minimal representation of MAPs

Sunkyo Kim, School of Business, Ajou University

Ajou University, Suwon, Korea
Apr. 5, 2019

Representation/parameter(s) of random variables

- Uniform (a, b) : Lower and upper bounds
- Binomial (n, p) : number of trials and P (success for a trial)
- Geometric $(p): \mathrm{P}$ (success for a trial)
- Poisson(λ): (Average) rate of occurrence
- Exponential(λ): 1/survival time
- $\mathrm{N}\left(\mu, \sigma^{2}\right)$: First two centered-moments (Mean and variance)
- Hypergeometric(N, M, n)
\Rightarrow All of above are minimal representations.

Laplace transform of random variables

(LT of the random variable and prob. density function)
Let X be a non-negative real-valued r.v. with pdf $f_{X}(x)$. Then, the LT of the r.v. X, and also the LT of the $f(x)$, is

$$
\mathrm{E}\left(e^{-s X}\right) \equiv \tilde{f}(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

(Moments of X)

$$
\left.\mathrm{E}\left(X^{n}\right) \equiv \frac{d^{n}}{d s^{n}} \tilde{f}(s)\right|_{s=0}
$$

- $X \sim \operatorname{Exponential}(\lambda), X \geq 0$

$$
f(x)=\lambda e^{-\lambda x} \Rightarrow \tilde{f}(s)=\frac{\lambda}{\lambda+s} \Rightarrow \mathrm{E}\left(X^{n}\right)=n!/ \lambda^{n}
$$

Representation/parameter(s) of stochastic processes

- Poisson process (λ) : i.i.d. exponential (λ) intervals
- Birth process $\left(\lambda_{0}, \lambda_{1}, \ldots\right)$: birth rates at each state
- Birth and death process $\left(\left(\lambda_{0}, \mu_{1}\right),\left(\lambda_{1}, \mu_{2}\right), \ldots\right)$ birth/death rates
- Renewal process: i.i.d. intervals
(Markov process/chain)
- Discrete-time Markov chain: 1-step transition matrix $\mathbf{P}^{n \times n}$
- Continuous-time Markov chain: infinitesimal generator $\mathbf{Q}^{n \times n}$
- inter-event time in state $i \sim \operatorname{exponential}\left(\lambda_{i}\right)$
- inter-event time and the next state are independent
- Semi-Markov process
- generalization of CTMC with non-exponential sojourn times

> Semi Markov Process
> $p_{i j}$ and f_{τ} arbitrary

Markov Process $p_{i j}$ arbitrary f_{τ} memoryless		Random Walk $\begin{gathered} p_{i j}=q_{j-i} \\ f_{\tau} \text { arbitrary } \end{gathered}$
Birth Death Process $p_{i j}=0, \forall\|j-i\|>1$ f_{τ} memoryless	Pure Birth Process $\mu_{i}=0$ Poisson $\lambda_{i}=\lambda$	Renewal Process $\begin{gathered} q_{1}=1 \\ f_{\tau} \\ \text { arbitrary } \end{gathered}$

Figure：Categories of stochastic processes＊
＊Originally from Queueing Systems，Volume I：Theory by L．Kleinrock．Adapted by
RK available at https：／／radhakrishna．typepad．com／queueing－systems．pdf

Overview

- $\operatorname{MAP}(n)$: Markovian arrival process of order n,
- A composite of n Poisson processes
- The minimal number of parameters: n^{2}
- Representations of MAPs
- Markovian representation: $\left(\mathbf{D}_{0}, \mathbf{D}_{1}\right)$
- Moments' representation: n^{2} moments
- Laplace transform (LT) representation
- Jordan representation: (E,R)
- Minimal realization problem (MRP) representation: $\left(\mathbf{K}^{\prime}, \mathbf{R}^{\prime}\right)$
- Characteristic polynomial representation
- LT of stationary intervals
- A $\operatorname{MAP}(n)$ is fully described by a lag- 1 joint LT
- A rational function with $n^{2}+n$ coefficients.
- Main result: Lag- 1 joint LT can be written in n^{2} parameters.

Markovian arrival processes

- How does an arrival takes place in $\operatorname{MAP}(n)$ s?
- At any time point, the $\operatorname{MAP}(n)$ is in one of n phases.
- Rate matrices $\left(\mathbf{D}_{0}, \mathbf{D}_{1}\right)$ governs transitions between phases
- \mathbf{D}_{1} is the rate matrix generating arrivals (and transitions if any).
- Off-diagonal entries of \mathbf{D}_{0} are transition rates without arrivals.
- Markovian representation of a $\operatorname{MAP}(2)$ with 6 rate parameters.

$$
\mathbf{D}_{0}=\left[\begin{array}{cc}
-\lambda_{11}-\lambda_{12}-\sigma_{12} & \sigma_{12} \\
\sigma_{21} & -\lambda_{21}-\lambda_{22}-\sigma_{21}
\end{array}\right], \mathbf{D}_{1}=\left[\begin{array}{cc}
\lambda_{11} & \lambda_{12} \\
\lambda_{21} & \lambda_{22}
\end{array}\right]
$$

$\mathbf{Q} \equiv \mathbf{D}_{0}+\mathbf{D}_{1}$ is the infinitesimal generator for the CTMC.

- Special cases of MAPs
- Poisson processes: exponential inter-arrival times
- Erlang distribution and hyper-exponential distribution
- Markov-modulated Poisson processes (MMPP)

Markovian arrival processes：MAP（2）

－Infinitesimal generator for the CTMC and transition diagram

$$
\mathbf{Q} \equiv \mathbf{D}_{0}+\mathbf{D}_{1}=\left[\begin{array}{cc}
-\sigma_{12}-\lambda_{12} & \sigma_{12}+\lambda_{12} \\
\sigma_{21}+\lambda_{21} & -\sigma_{21}-\lambda_{21}
\end{array}\right],
$$

－Transition rate from phase 1 to $2: \lambda_{12}+\sigma_{12}$
－Transition rate from phase 2 to $1: \lambda_{21}+\sigma_{21}$
－Arrival rate in phase 1：$\lambda_{11}+\lambda_{12}$
－Arrival rate in phase 2：$\lambda_{21}+\lambda_{22}$

Representations of $\operatorname{MAP}(n) s$

- Markovian representation: $\left(\mathbf{D}_{0}, \mathbf{D}_{1}\right)$ matrices
- A $\operatorname{MAP}(n)$ is described by two $n \times n$ transition rate matrices
- $2 n^{2}-n$ parameters \Rightarrow redundant (not minimal)!!!
- Real-valued and straightforward
- Not unique
- Moments' representation: n^{2} moments
- $2 n-1$ marginal moments
- $(n-1)^{2}$ joint moments
- Real-valued, minimal, and unique
- Not straightforward \Rightarrow Existence of a feasible $\left(\mathbf{D}_{0}, \mathbf{D}_{1}\right)$?
- LT representation: a rational function with $n^{2}+n$ coefficients
- A $\operatorname{MAP}(n)$ is fully described by a lag- 1 joint LT
- Real-valued and unique but not minimal
- Not straightforward
(Question) Can we write lag-1 joint LT in terms of n^{2} parameters?

Markovian representation $\left(D_{0}, D_{1}\right)$ of $\mathrm{MAP}(3) \mathrm{s}$

$$
\mathbf{D}_{0}=\left[\begin{array}{ccc}
-\sigma_{1}-\lambda_{1} & \sigma_{12} & \sigma_{13} \\
\sigma_{21} & -\sigma_{2}-\lambda_{2} & \sigma_{23} \\
\sigma_{31} & \sigma_{32} & -\sigma_{3}-\lambda_{3}
\end{array}\right], \mathbf{D}_{1}=\left[\begin{array}{ccc}
\lambda_{11} & \lambda_{12} & \lambda_{13} \\
\lambda_{21} & \lambda_{22} & \lambda_{23} \\
\lambda_{31} & \lambda_{32} & \lambda_{33}
\end{array}\right]
$$

with infinitesimal generator for the CTMC

$$
\mathbf{Q}=\left[\begin{array}{lll}
-\sigma_{1}-\bar{\lambda}_{1} & \lambda_{12}+\sigma_{12} & \lambda_{13}+\sigma_{13} \\
\lambda_{21}+\sigma_{21} & -\sigma_{2}-\bar{\lambda}_{2} & \lambda_{23}+\sigma_{23} \\
\lambda_{31}+\sigma_{31} & \lambda_{32}+\sigma_{32} & -\sigma_{3}-\bar{\lambda}_{3}
\end{array}\right]
$$

where $\sigma_{i}=\sum_{j \neq i} \sigma_{i j}, \lambda_{i}=\sum_{j=1}^{3} \lambda_{i j}, \bar{\lambda}_{i}=\sum_{j \neq i} \lambda_{i j}$.

- $6+9=15$ rate parameters in $\left(\mathbf{D}_{0}, \mathbf{D}_{1}\right)$.
- Minimal number of parameters for $\operatorname{MAP}(3)$ is $3^{2}=9$.

Markovian representation $\left(\mathbf{D}_{0}, \mathbf{D}_{1}\right)$ of $\operatorname{MAP}(n) \mathrm{s}$

$$
\begin{aligned}
& \mathbf{D}_{0}=\left[\begin{array}{ccccc}
-\lambda_{1}-\sigma_{1} & \sigma_{1,2} & \cdots & \sigma_{1, n-1} & \sigma_{1, n} \\
\sigma_{2,1} & -\lambda_{2}-\sigma_{2} & \cdots & \sigma_{2, n-1} & \sigma_{2, n} \\
\vdots & & \ddots & & \vdots \\
\sigma_{n-1,1} & \sigma_{n-1,2} & \cdots & -\lambda_{n-1}-\sigma_{n-1} & \sigma_{n-1, n} \\
\sigma_{n, 1} & \sigma_{n, 2} & \cdots & \sigma_{n, n-1} & -\lambda_{n}-\sigma_{n}
\end{array}\right], \\
& \mathbf{D}_{1}=\left[\begin{array}{cccc}
\lambda_{11} & \lambda_{12} & \cdots & \lambda_{1, n} \\
\lambda_{21} & \lambda_{22} & \cdots & \lambda_{2, n} \\
\vdots & \vdots & \ddots & \vdots \\
\lambda_{n, 1} & \lambda_{n, 2} & \cdots & \lambda_{n, n}
\end{array}\right],
\end{aligned}
$$

where $\lambda_{i}=\sum_{j=1}^{n} \lambda_{i j}$ and $\sigma_{i}=\sum_{j=1, j \neq i}^{n} \sigma_{i j}$.

- $2 n^{2}-n$ rate parameters in $\left(\mathbf{D}_{0}, \mathbf{D}_{1}\right)$.
- Minimal number of parameters for $\operatorname{MAP}(n)$ is n^{2}.

Characteristic polynomial equations

(Characteristic polynomial equation of \mathbf{D}_{0} and \mathbf{Q})

- $\left|s \mathbf{I}-\mathbf{D}_{0}\right|=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}$
- $|s \mathbf{I}-\mathbf{Q}|=s^{n}+\Sigma_{n-1} s^{n-1}+\cdots+\Sigma_{1} s$
(Coefficients of characteristic polynomial equations)
- $a_{0}=(-1)^{n}\left|\mathbf{D}_{0}\right|=\left|-\mathbf{D}_{0}\right|$
- $a_{n-1}=\operatorname{Trace}\left(-\mathbf{D}_{0}\right)$
- $|\mathbf{Q}|=0 \Rightarrow$ Constant term $=0$
- $\Sigma_{n-1}=\operatorname{Trace}(-\mathbf{Q})$
- $\Sigma_{1}=\bar{q}_{1}+\bar{q}_{2}+\cdots+\bar{q}_{n}$ where $\overline{\boldsymbol{q}}=\left(\bar{q}_{1}, \bar{q}_{2}, \ldots, \bar{q}_{n}\right)$ is the vector of $(n-1) \times(n-1)$ principal minors of matrix \mathbf{Q}

Steady-state probability vectors of MAP (n) 's

(Stationary prob. vector $\boldsymbol{\pi}$ for CTMC with \mathbf{Q})

- $\boldsymbol{\pi} \mathrm{Q}=\mathbf{0}$ and $\boldsymbol{\pi} \boldsymbol{e}=1$
- $\boldsymbol{\pi}=\overline{\boldsymbol{q}} / \Sigma_{1}$
- $\boldsymbol{\pi} \mathbf{Q}=\boldsymbol{\pi}\left(\mathbf{D}_{0}+\mathbf{D}_{1}\right)=\mathbf{0} \Rightarrow \boldsymbol{\pi}\left(-\mathbf{D}_{0}\right)=\boldsymbol{\pi} \mathbf{D}_{1}$
- $\left(\mathrm{D}_{0}+\mathrm{D}_{1}\right) \boldsymbol{e}=\mathbf{Q} \boldsymbol{e}=\mathbf{0} \Rightarrow-\mathrm{D}_{0} \boldsymbol{e}=\mathrm{D}_{1} \boldsymbol{e}$.
- Arrival rate: $\lambda_{A} \equiv \pi \mathbf{D}_{1} e$
(Stationary prob. vector \boldsymbol{p} for embedded DTMC \mathbf{P})
- $\mathbf{P}=-\mathbf{D}_{0}^{-1} \mathbf{D}_{1}$
- $\boldsymbol{p}=\boldsymbol{p} \mathbf{P}$ and $\boldsymbol{p e}=1$
- $\boldsymbol{p}=\boldsymbol{\pi} \mathrm{D}_{1} / \lambda_{A}$

Adjoint/adjugate/adjunct matrix

For an $n \times n$ matrix \mathbf{A},

- The minor, $M_{i j}$, is the determinant of an $(n-1) \times(n-1)$ matrix obtained from \mathbf{A} by deleting i-th row and j-th column.
- The cofactor: $C_{i j}=(-1)^{i+j} M_{i j}$.
- The cofactor matrix: $\mathbf{C}=\left[C_{i j}\right]=\left[(-1)^{i+j} M_{i j}\right]$
- The adjoint matrix: $\operatorname{Adj}(\mathbf{A})=\mathbf{C}^{T}$.
- $\mathbf{A A d j}(\mathbf{A})=|\mathbf{A}| \mathbf{I} \quad \Rightarrow \mathbf{A}^{-1}=\operatorname{Adj}(\mathbf{A}) /|\mathbf{A}|$
(Example)

$$
\begin{gathered}
\mathbf{A}=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right), \mathbf{C}=\left(\begin{array}{ccc}
M_{11} & -M_{12} & M_{13} \\
-M_{21} & M_{22} & -M_{23} \\
M_{31} & -M_{32} & M_{33}
\end{array}\right), \\
M_{12}=\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|, C_{12}=(-1)^{1+2} M_{12}=-\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|
\end{gathered}
$$

Adjoint/adjugate/adjunct matrix

$$
\begin{aligned}
\operatorname{Adj}(\mathbf{A})=\mathbf{C}^{T} & =\left(\begin{array}{ccc}
M_{11} & -M_{21} & M_{31} \\
-M_{12} & M_{22} & -M_{32} \\
M_{13} & -M_{23} & M_{33}
\end{array}\right) \\
& =\left(\begin{array}{rrr}
+\left|\begin{array}{lll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right| & -\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{32} & a_{33}
\end{array}\right| & +\left|\begin{array}{ll}
a_{12} & a_{13} \\
a_{22} & a_{23}
\end{array}\right| \\
-\left|\begin{array}{lll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right| & -\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{21} & a_{23}
\end{array}\right| \\
+\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|-\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{31} & a_{32}
\end{array}\right| & +\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|
\end{array}\right)
\end{aligned}
$$

- $\operatorname{Adj}(s \mathbf{I}-\mathbf{A})=?$

Cayley-Hamilton theorem

(Cayley-Hamilton) For an $n \times n$ matrix \mathbf{D} with characteristic polynomial equation $|s \mathbf{I}-\mathbf{D}|=s^{n}+a_{n-1} s^{n-1}+\cdots+a_{1} s+a_{0}$,

$$
\mathbf{D}^{n}+a_{n-1} \mathbf{D}^{n-1}+\cdots+a_{1} \mathbf{D}+a_{0} \mathbf{I}=\mathbf{0}
$$

(Def) $\mathbf{C}_{k} \equiv \sum_{i=0}^{n-2-k} a_{k+i+1} \mathbf{D}_{0}^{i}+\mathbf{D}_{0}^{n-k-1}$ for $0 \leq k \leq n-2$

- $\mathbf{C}_{0}=a_{1} \mathbf{I}+a_{2} \mathbf{D}_{0}+\cdots+a_{n-1} \mathbf{D}_{0}^{n-2}+\mathbf{D}_{0}^{n-1}$
- $-\mathbf{D}_{0} \mathbf{C}_{0}=-a_{1} \mathbf{D}_{0}-a_{2} \mathbf{D}_{0}^{2}-\cdots-a_{n-1} \mathbf{D}_{0}^{n-1}-\mathbf{D}_{0}^{n}=a_{0} \mathbf{I}$
$-\mathbf{C}_{0}=\operatorname{Adj}\left(-\mathbf{D}_{0}\right) \quad \because-\mathbf{D}_{0} \operatorname{Adj}\left(-\mathbf{D}_{0}\right)=\left|-\mathbf{D}_{0}\right| \mathbf{I}=a_{0} \mathbf{I}$
- Set $\mathbf{C}_{n-1} \equiv \mathbf{I}$ and $\mathbf{C}_{n} \equiv \mathbf{0}$.

A minimal LT representation of $\operatorname{MAP}(n) \mathrm{s}$

(Claim) The lag-1 joint LT of $\operatorname{MAP}(n)$ s can be written in terms of n^{2} parameters ($\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$)

- $\boldsymbol{a}=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right):$ coefficients of $\left|s \mathbf{I}-\mathbf{D}_{0}\right|$
- $\boldsymbol{b}=\left(b_{1}, b_{2}, \ldots, b_{n-1}\right): b_{k} \equiv \boldsymbol{p} \mathbf{C}_{k} \mathbf{D}_{1} \boldsymbol{e}$ for $1 \leq k \leq n-1$.
- $\boldsymbol{c}=\left(c_{11}, \ldots, c_{n-1, n-1}\right): c_{i j}=\boldsymbol{p} \mathbf{C}_{i} \mathbf{D}_{1} \mathbf{C}_{j} \mathbf{D}_{1} \boldsymbol{e}$ for $i, j=1, \ldots, n-1$
- $n+(n-1)+(n-1)^{2}=n^{2}$ parameters

Since $\mathbf{C}_{n-1} \equiv \mathbf{I}$,

$$
\begin{aligned}
c_{i, n-1} & =\boldsymbol{p} \mathbf{C}_{i} \mathbf{D}_{1}^{2} \boldsymbol{e}, \\
c_{n-1, j} & =\boldsymbol{p} \mathbf{D}_{1} \mathbf{C}_{j} \mathbf{D}_{1} \boldsymbol{e}, \\
c_{n-1, n-1} & =\boldsymbol{p} \mathbf{D}_{1}^{2} \boldsymbol{e} .
\end{aligned}
$$

Constant term in the LT and $\operatorname{Adj}\left(s \mathbf{I}-\mathbf{D}_{0}\right)$

(Lemma 1) For $\operatorname{MAP}(n)$ s with $\left(\mathbf{D}_{0}, \mathbf{D}_{1}\right)$ and $\mathbf{C}_{0} \equiv \operatorname{Adj}\left(-\mathbf{D}_{0}\right)$,

$$
\begin{aligned}
p \mathbf{C}_{0} \mathbf{D}_{1} & =\left|-\mathbf{D}_{0}\right| \boldsymbol{p} \\
\mathbf{C}_{0} \mathbf{D}_{1} \boldsymbol{e} & =\left|-\mathbf{D}_{0}\right| \boldsymbol{e} .
\end{aligned}
$$

(Lemma 2)

$$
\operatorname{Adj}\left(s \mathbf{I}-\mathbf{D}_{0}\right) \equiv \sum_{j=0}^{n-1} \sum_{i=0}^{n-j-1} a_{i+j+1} s^{i} \mathbf{D}_{0}^{i}=\sum_{i=0}^{n-1} s^{i} \mathbf{C}_{i}
$$

By Lemma 1,

$$
\begin{aligned}
\boldsymbol{p} \mathbf{C}_{0} \mathbf{D}_{1} \boldsymbol{e} & =\left|-\mathbf{D}_{0}\right| \boldsymbol{p e}=a_{0} \\
p \mathbf{C}_{0} \mathbf{D}_{1} \mathbf{C}_{0} \mathbf{D}_{1} \boldsymbol{e} & =\left|-\mathbf{D}_{0}\right|^{2} \boldsymbol{p} \boldsymbol{e}=a_{0}^{2}
\end{aligned}
$$

Constant term in the LT and $\operatorname{Adj}\left(s \mathbf{I}-\mathbf{D}_{0}\right)$

(Proof of Lemma 1) Since $\mathbf{P} \equiv\left(-\mathbf{D}_{0}\right)^{-1} \mathbf{D}_{1}$ and $\boldsymbol{p}=\boldsymbol{p} \mathbf{P}$,

$$
\boldsymbol{p} \mathbf{C}_{0} \mathbf{D}_{1}=\boldsymbol{p} \operatorname{Adj}\left(-\mathbf{D}_{0}\right) \mathbf{D}_{1}=\boldsymbol{p}\left|-\mathbf{D}_{0}\right|\left(-\mathbf{D}_{0}\right)^{-1} \mathbf{D}_{1}=\left|-\mathbf{D}_{0}\right| \boldsymbol{p}
$$

Since $\mathbf{Q} \equiv \mathbf{D}_{0}+\mathbf{D}_{1}$ and $\mathbf{Q} \boldsymbol{e}=\mathbf{0}$, we have $\mathbf{D}_{1} \boldsymbol{e}=-\mathbf{D}_{0} \boldsymbol{e}$ and

$$
\mathbf{C}_{0} \mathbf{D}_{1} \boldsymbol{e}=\operatorname{Adj}\left(-\mathbf{D}_{0}\right)\left(-\mathbf{D}_{0}\right) \boldsymbol{e}=\left|-\mathbf{D}_{0}\right| \boldsymbol{e} .
$$

Marginal and joint LT of MAP(2) stationary intervals

$$
\begin{aligned}
\mathbf{D}_{0} & =\left[\begin{array}{cc}
-\lambda_{1}-\sigma_{1} & \sigma_{1} \\
\sigma_{2} & -\lambda_{2}-\sigma_{2}
\end{array}\right], \mathbf{D}_{1}=\left[\begin{array}{ll}
\lambda_{11} & \lambda_{12} \\
\lambda_{21} & \lambda_{22}
\end{array}\right], \\
\mathbf{Q} & =\left[\begin{array}{cc}
-\sigma_{1}-\lambda_{12} & \sigma_{1}+\lambda_{12} \\
\sigma_{2}+\lambda_{21} & -\sigma_{2}-\lambda_{21}
\end{array}\right],
\end{aligned}
$$

where $\lambda_{i}=\lambda_{i 1}+\lambda_{i 2}$.

$$
\begin{aligned}
\tilde{f}(s) & =\boldsymbol{p}\left(s \mathbf{I}-\mathbf{D}_{0}\right)^{-1} \mathbf{D}_{1} \boldsymbol{e} \\
& =\frac{b_{1} s+a_{0}}{s^{2}+a_{1} s+a_{0}}, \\
\tilde{f}(s, t) & =\boldsymbol{p}\left(s \mathbf{I}-\mathbf{D}_{0}\right)^{-1} \mathbf{D}_{1}\left(t \mathbf{I}-\mathbf{D}_{0}\right)^{-1} \mathbf{D}_{1} \boldsymbol{e} \\
& =\frac{c_{11} s t+a_{0} b_{1}(s+t)+a_{0}^{2}}{\left(s^{2}+a_{1} s+a_{0}\right)\left(t^{2}+a_{1} t+a_{0}\right)} .
\end{aligned}
$$

Marginal LT of $\operatorname{MAP}(n)$ inter-arrival times

(Proposition 1) The marginal LT of the stationary interval T of a $\operatorname{MAP}(n)$ is

$$
\tilde{f}(s)=\frac{b_{n-1} s^{n-1}+\cdots+b_{2} s^{2}+b_{1} s+a_{0}}{s^{n}+a_{n-1} s^{n-1}+\cdots+a_{2} s^{2}+a_{1} s+a_{0}} .
$$

Proof

$$
\begin{aligned}
\tilde{f}(s) & \equiv \mathrm{E}\left(e^{-s T}\right)=\boldsymbol{p}\left(s \mathbf{I}-\mathbf{D}_{0}\right)^{-1} \mathbf{D}_{1} \boldsymbol{e} \\
& =\frac{\boldsymbol{p} \operatorname{Adj}\left(s \mathbf{I}-\mathbf{D}_{0}\right) \mathbf{D}_{1} \boldsymbol{e}}{\left|s \mathbf{I}-\mathbf{D}_{0}\right|}=\frac{\boldsymbol{p} \sum_{k=0}^{n-1} s^{k} \mathbf{C}_{k} \mathbf{D}_{1} \boldsymbol{e}}{\left|s \mathbf{I}-\mathbf{D}_{0}\right|}
\end{aligned}
$$

since $\boldsymbol{p} \mathbf{C}_{0} \mathbf{D}_{1} \boldsymbol{e}=a_{0}$ and $\boldsymbol{p} \mathbf{C}_{k} \mathbf{D}_{1} \boldsymbol{e}=b_{k}$ for $1 \leq k \leq n-1$.

Lag- 1 joint LT of $\operatorname{MAP}(n)$ interarrival times

(Proposition 2) The joint LT of two consecutive stationary intervals $\left(T_{1}, T_{2}\right)$ of a $\operatorname{MAP}(n)$ is

$$
\tilde{f}(s, t)=\frac{\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} c_{i j} s^{i} t^{j}+a_{0} \sum_{i=1}^{n-1} b_{i}\left(s^{i}+t^{i}\right)+a_{0}^{2}}{\left(s^{n}+\sum_{i=0}^{n-1} a_{i} s^{i}\right)\left(t^{n}+\sum_{i=0}^{n-1} a_{i} t^{i}\right)}
$$

Proof

$$
\begin{aligned}
\tilde{f}(s, t) & \equiv \mathrm{E}\left(e^{-s T_{1}} e^{-t T_{2}}\right)=\boldsymbol{p}\left(s \mathbf{I}-\mathbf{D}_{0}\right)^{-1} \mathbf{D}_{1}\left(t \mathbf{I}-\mathbf{D}_{0}\right)^{-1} \mathbf{D}_{1} \boldsymbol{e} \\
& =\frac{\boldsymbol{p} \operatorname{Adj}\left(s \mathbf{I}-\mathbf{D}_{0}\right) \mathbf{D}_{1} \operatorname{Adj}\left(t \mathbf{I}-\mathbf{D}_{0}\right) \mathbf{D}_{1} \boldsymbol{e}}{\left|s \mathbf{I}-\mathbf{D}_{0}\right|\left|t \mathbf{I}-\mathbf{D}_{0}\right|}
\end{aligned}
$$

Lag- 1 joint LT of $\operatorname{MAP}(n)$ interarrival times

(Proof continued) The numerator can be written as

$$
\begin{aligned}
& \boldsymbol{p}\left(\sum_{i=0}^{n-1} s^{i} \mathbf{C}_{i}\right) \mathbf{D}_{1}\left(\sum_{i=0}^{n-1} t^{i} \mathbf{C}_{i}\right) \mathbf{D}_{1} \boldsymbol{e} \\
& =\boldsymbol{p} \sum_{i=1}^{n-1} \sum_{j=1}^{n-1} \mathbf{C}_{i} \mathbf{D}_{1} \mathbf{C}_{j} \mathbf{D}_{1} \boldsymbol{e} s^{i} t^{j}+\boldsymbol{p} \sum_{i=1}^{n-1}\left(\mathbf{C}_{i} \mathbf{D}_{1} \mathbf{C}_{0} \mathbf{D}_{1} s^{i}+\mathbf{C}_{0} \mathbf{D}_{1} \mathbf{C}_{i} \mathbf{D}_{1} t^{i}\right) \boldsymbol{e} \\
& +\boldsymbol{p} \mathbf{C}_{0} \mathbf{D}_{1} \mathbf{C}_{0} \mathbf{D}_{1} \boldsymbol{e} \\
& =\sum_{i=1}^{n-1} \sum_{j=1}^{n-1} c_{i j} s^{i} t^{j}+a_{0} \sum_{i=1}^{n-1} b_{i}\left(s^{i}+t^{i}\right)+a_{0}^{2}
\end{aligned}
$$

since $c_{i j} \equiv \boldsymbol{p} \mathbf{C}_{i} \mathbf{D}_{1} \mathbf{C}_{j} \mathbf{D}_{1} \boldsymbol{e}$ and $\boldsymbol{p} \mathbf{C}_{i} \mathbf{D}_{1} \mathbf{C}_{0} \mathbf{D}_{1} \boldsymbol{e}=\boldsymbol{p} \mathbf{C}_{0} \mathbf{D}_{1} \mathbf{C}_{i} \mathbf{D}_{1} \boldsymbol{e}=a_{0} b_{i}$.

Conclusion

- Markovian representation: $\left(\mathbf{D}_{0}, \mathbf{D}_{1}\right)$
- Real-valued and straightforward
- Redundant (not minimal) and not unique
- Moments' representation: n^{2} moments
- 2n-1 marginal moments and $(n-1)^{2}$ joint moments
- Real-valued, minimal, and unique
- Not straightforward \Rightarrow Existence of a feasible $\left(\mathbf{D}_{0}, \mathbf{D}_{1}\right)$?
- LT representation: a rational function with $n^{2}+n$ coefficients
- A $\operatorname{MAP}(n)$ is fully described by a lag- 1 joint LT
- Real-valued and unique
- Not straightforward
(Main result)
- $n^{2}+n$ coefficients in the Lag- 1 joint LT can be written in terms of n^{2} parameters. \Rightarrow A minimal representation!

