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Introduction Motivation

Overview

Representation/parameter(s) of random variables

>
>
>
>
S
>
>

Uniform(a, b): Lower and upper bounds

Binomial(n, p): number of trials and P(success for a trial)
Geometric(p): P(success for a trial)

Poisson(\): (Average) rate of occurrence

Exponential(\): 1/survival time

N(u,o?): First two centered-moments (Mean and variance)
Hypergeometric(N, M, n)

= All of above are minimal representations.
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Introduction Motlvatlon
Ov

Laplace transform of random variables

(LT of the random variable and prob. density function)
Let X be a non-negative real-valued r.v. with pdf fx(z). Then, the

LT of the r.v. X, and also the LT of the f(z), is

E(e=%) = f(s) = / T et iyt

(Moments of X)

» X ~ Exponential(A), X >0
-z r A n n
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Introduction Motivation

Overview

Representation /parameter(s) of stochastic processes

Poisson process(A): i.i.d. exponential()\) intervals

Birth and death process((Ag, 1£1), (A1, pt2), ...): birth/death rates

»
» Birth process(Ag, A1, ...): birth rates at each state
>
» Renewal process: i.i.d. intervals

(Markov process/chain)
» Discrete-time Markov chain: 1-step transition matrix P™*"

» Continuous-time Markov chain: infinitesimal generator Q™"

> inter-event time in state i ~ exponential(A;)
> inter-event time and the next state are independent

» Semi-Markov process

» generalization of CTMC with non-exponential sojourn times
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Introduction Motivation

(0]

Semi Markov Process
pi; and f; arbitrary

Markov PI‘OCCSS Random Walk
pij arbitrary o
fr memoryless Pij 7_(]]77'

fr arbitrary

Birth Death Process -

pij = 0, VlJ . 'Ll =1 Pure Birth Process Renewal Proces

i =0 =1
q1
fr memoryless fr arbitrary

Figure: Categories of stochastic processes™

*QOriginally from Queueing Systems, Volume I: Theory by L. Kleinrock. Adapted by

RK available at https://radhakrishna.typepad.com/queueing-systems.pdf
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Introduction Motivation

Overview

Overview

>

MAP(n): Markovian arrival process of order n,

> A composite of n Poisson processes
» The minimal number of parameters: n?

v

Representations of MAPs

Markovian representation: (Do, D1)

Moments’ representation: n? moments

Laplace transform (LT) representation

Jordan representation: (E,R)

Minimal realization problem (MRP) representation: (K', R’)
Characteristic polynomial representation

vyVYyVvYVvVYVvYyYy

v

LT of stationary intervals

» A MAP(n) is fully described by a lag-1 joint LT
» A rational function with n? + n coefficients.

v

Main result: Lag-1 joint LT can be written in n? parameters.
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Replesentatlons of MAP(n)s
Markovian Arrival Processes eristic polynomials and Adjugate matrix
Hamilton theorem

Markovian arrival processes

» How does an arrival takes place in MAP(n)s?
> At any time point, the MAP(n) is in one of n phases.
» Rate matrices (Do, D) governs transitions between phases
> D, is the rate matrix generating arrivals (and transitions if any).
> Off-diagonal entries of Dg are transition rates without arrivals.

» Markovian representation of a MAP(2) with 6 rate parameters.

Do — —A11 — A2 — 012 o12 } _ { A1 A2 ]
0 o921 —Ao1 —Aag — o091 |’ Ao1 Ao

Q = Dy + D; is the infinitesimal generator for the CTMC.
» Special cases of MAPs

» Poisson processes: exponential inter-arrival times
» Erlang distribution and hyper-exponential distribution
» Markov-modulated Poisson processes (MMPP)
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Replesentatlons of MAP(n)s
Markovian Arrival Processe! -t ¢ polynomials and Adjugate matrix
amilton theorem

Markovian arrival processes: MAP(2)

» Infinitesimal generator for the CTMC and transition diagram

—012 — A2 O12 + A12
=Dy + D, =
Q ot+h { o921 + Ao1 —021 — A1 } ’

A An

Transition rate from phase 1 to 2: A\i2 + 012
Transition rate from phase 2 to 1: A21 + 021
Arrival rate in phase 1: A1 + A12
Arrival rate in phase 2: A21 + Aoz

vy vy VY
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Replesentatlons of MAP(n)s
Markovian Arrival Processes eristic polynomials and Adjugate matrix
Hamilton theorem

Representations of MAP(n)s

» Markovian representation: (Dg, D;) matrices
» A MAP(n) is described by two n x n transition rate matrices
» 2n? — n parameters = redundant (not minimal)!!!
» Real-valued and straightforward
> Not unique

» Moments’ representation: n?

moments
> 2n — 1 marginal moments
> (n —1)? joint moments
> Real-valued, minimal, and unique
> Not straightforward = Existence of a feasible (Do, D1)?
» LT representation: a rational function with n? + n coefficients
» A MAP(n) is fully described by a lag-1 joint LT
» Real-valued and unique but not minimal
» Not straightforward

(Question) Can we write lag-1 joint LT in terms of n? parameters?
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ations of MAP(n)s
Markovian Arrival Processes istic p 1\.. ymials and Adjugate matrix
amilton the

—01— A1 012 013 Al Az A
Dy = 021 —02 — A2 023 , Di=1] A1 Aog Ags
031 032 —03 — A3 A3l Az Assz

with infinitesimal generator for the CTMC

—01— A1 A2+ 012 A3 + 013
Q= | A1 +oa —02— A2 Apz+o0a3
Az1 +031 Az +032 —03 — A3

where ag; = Zj;éi Uz’j7>\i = 23:1 /\ija /_\z = ijéi )\ij
> 6+9 = 15 rate parameters in (Do, D1).
» Minimal number of parameters for MAP(3) is 3% = 9.
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Replesentatlons of MAP(n)s
Markovian Arrival Processes -t c polynomials and Adjug

amilton theorem

ate matrix

Markovian representation (Dg, D;) of MAP(n)s

—A1— 01 01,2 O1n—1 Oin
021 Ay —0og - 02 n—1 02,n
Dy = )
On—1,1 On-12 *** —Ap—1—0n-1 Op_1n
L On,1 On,2 e On,n—1 _An —0n
A1 A2 0 A
A2 A2 - Ao
Dl = . . . . )
L )\n,l )\n,2 e >\n,n

where \; = 377 Aij and 03 = 37

j=1,j#i 9ij-
» 2n% — n rate parameters in (Dg, Dy).
» Minimal number of parameters for MAP(n) is n?.
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ions of MAP(n)s
Markovian Arrival Processes polynomials and Adjugate matrix
on theorem

Characteristic polynomial equations

(Characteristic polynomial equation of Dy and Q)
> |sI —Dg| =s"+anp15"" '+ +ars+ao
> sI-Q|=s"+ %, 18" L+ + 38

(Coefficients of characteristic polynomial equations)

> ag = (=1)"[Do| = | — Dy|

» a,_1 = Trace(—Dy)

» |Q| = 0= Constant term = 0

» ¥, 1 = Trace(—Q)

> X1 =G +Go+ -+ Gn where g = (Cﬁ,(j% 7cjn) is the vector of

(n —1) x (n — 1) principal minors of matrix Q
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1s of MAP(n)s
Markovian Arrival Processes polynomials and Adjugate matrix
Ce on theorem

Steady-state probability vectors of MAP(n)’s

(Stationary prob. vector 7w for CTMC with Q)

» 1Q =0 and me =1

> =g/

» 1Q=n(Do+D;) =0= w(—Dy) = 7D,
» (Dgp+Dj)e=Qe=0= —Dge =Dse.
>

Arrival rate: Aq = wDje

(Stationary prob. vector p for embedded DTMC P)
» P=-D;'D,
» p=pP and pe =1
» p=7D1/
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1s of MAP(n)s
Markovian Arrival Processes polynomials and Adjugate matrix
Ce on theorem

Adjoint /adjugate/adjunct matrix

For an n x n matrix A,

» The minor, M;;, is the determinant of an (n — 1) x (n — 1) matrix
obtained from A by deleting i-th row and j-th column.

» The cofactor: Cy; = (—1)" M;;.

» The cofactor matrix: C = [C;;] = [(—1)"" M;;]
» The adjoint matrix: Adj(A) = CT.

» AAdI(A) = (Al = A~! = Adj(A)/|A|

(Example)
a1 ai2 ais My —Myo M3
A=lax ax ax3|,C=|-Mxy My —DMy],
asy Gz as33 Mz —Msy  Mss
a1 a3 142 as1 Q93
M12 = 7012 ES (—1) M12 == .
agy as3 azy as3
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a21
a31

a1
az1

> Adj(sI—A) =7

—My Mz
May  —Msg
—Masz  Ms3
a3 _ |G12 Q13 + ai2  ai3
ass azz 33 a2 @23
a23 + air ai3| _ |G11 413
ass asr  ass a1 az23
Q22|  |G11 Q12 + ail a2
as2 azy aszz a1 a2z
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Markovian Arrival Processes 3 polynomi nd Adjugate matrix

Cayley-Hamilton theorem

(Cayley-Hamilton) For an n x n matrix D with characteristic
polynomial equation |sI — D| = s" + a,,_18" "1 + -+ + a1s + ao,

D" +a, D" '+ +a;D+al =0.

(Def) Cr =7 F 4 DL+ D for 0 <k <n—2
» Co=aI+aDg+ - +a, Dy 2+Dp !
» —DyCyp = —a;Dg —asD3 — -+ —a, 1Dy~ — DI = apl
» Cy = Adj(—Do) " =DoAdj(—=Dy) = | = Do|I = aol
» Set C,,_;=Iand C, =0.
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Markovian Arrival Processes nd Adjugate matrix

A minimal LT representation of MAP(n)s

(Claim) The lag-1 joint LT of MAP(n)s can be written in terms of n?
parameters (a, b, ¢)

» a = (ag,a,...,an—1): coefficients of |sI — Dy|

> b= (b1,bo,....;bp_1): by =pCrDjefor 1 <k <n-1.

> (611,... Cn—1n— 1)' Cij :pCiDleDle for t,j=1,..,n—1
> n+

n—1)+ (n —1)? = n? parameters
Since C,,_1 =1,

cin-1=pC,;Die,
¢n-1,; = pD1C;Dye,

2
Cn—1,n—1 = pD7e.
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Markovian Arrival Processes (e} E 3
Cayley-Hamilton tk

Constant term in the LT and Adj(sI — Dy)

(Lemma 1) For MAP(n)s with (Dgy,D1) and Cy = Adj(—Dy),

pCoD; = | — Dy|p,
CoDle = | — D0|6. (|

(Lemma 2)

n—1n—j—1 n—1
Adi(sT-Do) = > > airj15Dy =Y s'C,. O
j=0 =0 =0
By Lemma 1,
pCoD;e = | — Dy|pe = ao,
pCOD1COD16 = | — D0|2pe = CLg.
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Markovian Arrival Processes

Constant term in the LT and Adj(sI — Dy)

(Proof of Lemma 1) Since P = (—Dg) 'D; and p = pP,
pCoD; = pAdj(—Dg)D; = p| — Do|(—Do)'D;y = | — Do|p.
Since Q = Dy + D; and Qe = 0, we have D1e = —Dge and

CoD1e = Adj(=Do)(—Do)e = | — Dole. O
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AP(2) intervals
y LT of MAP(n)s
Laplace Transform of MAP(n) intervals Jo of I\I AP(n)s

Marginal and joint LT of MAP(2) stationary intervals

Q:|:—C71—/\12 o1+ A2 ]

o2+ A1 —02— Ay
where \; = A\j1 + Ai2.
f(s) =p(sI — Do)_lDle
b13 + ag
s24+a1s+ao’
f(s,t) = p(sI —Dg)'Dy(tI — Dy) 'D1e
B ci18t + aghy (s +t) + a?
(s2 4+ a1s + ag)(t2 + art +ag)’
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LT of MAP(2) ir
Marginal LT of
Laplace Transform of MAP(n) intervals Joint LT of MAP

Marginal LT of MAP(n) inter-arrival times

(Proposition 1) The marginal LT of the stationary interval T of a
MAP(n) is

f.( ) bn_15”71+-'-+b252+b15+a0
s) = .
S+ ap_18"" 4+ -4 ags? +ar1s+ag

Proof

f(s) =E(e*T) = p(sI — Dy) 'Dye

n—1
pz s*CyD;e
_ PpAdj(sT - Dy)D;e _ k=0
|sT — Dy |sI — Dy

since pCpDe = ag and pCyD1e =b; for 1 <k <n—1.
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Laplace Transform of MAP(n) intervals

Lag-1 joint LT of MAP(n) interarrival times

(Proposition 2) The joint LT of two consecutive stationary intervals
(Th,Ts) of a MAP(n) is

n—1n—1

ZZCUStJ-HloZb (s —l—t’ +a0

i=1 j=1
(s” + i aisi> (t" + i aiti>
i=0 i=0

f(s,t) =E(e™*Tte™t2) = p(sI — Do) "'D;(tI — Do) "'D1e
- pAdJ(SI — Do)DlAdj(tI — Do)Dle
B |sT — Dg|[tT — Dy

fls,t) =

Proof

(22/24)

Sunkyo Kim, School of Business, Ajou University A minimal representation of MAPs



1AP(2) intervals
al LT of MAP(n)s
Laplace Transform of MAP(n) intervals LT of MAP(n)s

Lag-1 joint LT of MAP(n) interarrival times

—pZZCD C. Dlestj—i—pz C;D;CoD;s' + CoD;C,D;t')e

i=1 j=1 i=1
+pCOD C()D1€
n—1n—1
_ZZcustj—&—aOZb st 1) +a0
i=1 j=1

since Cij = pCichlee and pCichoDle = pCochiDle = (l()bi.
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Conclusion

» Markovian representation: (D, D1)
> Real-valued and straightforward
» Redundant (not minimal) and not unique
» Moments’ representation: n? moments
» 2n — 1 marginal moments and (n — 1)? joint moments
> Real-valued, minimal, and unique
> Not straightforward = Existence of a feasible (Do, D1)?
» LT representation: a rational function with n? + n coefficients
» A MAP(n) is fully described by a lag-1 joint LT
> Real-valued and unique
» Not straightforward

(Main result)

» n? + n coefficients in the Lag-1 joint LT can be written in terms
of n? parameters. = A minimal representation!
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