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Reinforcement

Learning 7 ki

|ntrOdUCtiOn: F ot / m At each step t the agent:

C 7 - m Executes action A;
omponents =g m Receives observation O

m Receives scalar reward R;

m [ he environment:

m Receives action A;
m Emits observation O, 4
m Emits scalar reward R;.1

m t increments at env. step
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Introduction:
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Mathematical
Formulation of

Reinforcement A state S; is Markov if and only if
Learning:
Markov Process

P[Si11 | St] = P[St+1 | S1,--., St

A Markov Process (or Markov Chain) is a tuple (S,P)
m S is a (finite) set of states

m P is a state transition probability matrix,
Pss" — P[St_}_]_ = S! | St — 5]




Mathematical
Formulation of
Reinforcement
Learning:

MRP

A Markov reward process is a Markov chain with values.

A Markov Reward Process is a tuple (S, P, R,~)
m S is a finite set of states

m P is a state transition probability matrix,
Pssr = P[Sti1 =5 | St = 5]

m R is a reward function, Rs = E[R;11 | St = 5]

m 7 is a discount factor, v € [0, 1]



Mathematical

Formulation Of The return G; is the total discounted reward from time-step t.
Reinforcement

Learning Gt = Rey1 +YRey2 + ... :Z'}/kRHkH
k=0

m [he discount v € |0, 1] is the present value of future rewards

m The value of receiving reward R after k + 1 time-steps is 7*R.
m [his values immediate reward above delayed reward.

m 7 close to 0 leads to " myopic” evaluation
m ~ close to 1 leads to "far-sighted” evaluation




Mathematical
Formulation of
Reinforcement

The value function v(s) gives the long-term value of state s

The state value function v(s) of an MRP is the expected return

Lea ming. : starting from state s
Value Function

v(s) =E[G: | St = 5]
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Mathematical The value function can be decomposed into two parts:
Formulation Of m immediate reward R;.q

Reinforcement m discounted value of successor state yv(S;11)
Learning

v(s) =E[G; | S¢ = s]
=E[Rei1+YRei2 + 7 Regz + o | Se = 5]
=E[Ri11 + v (Rexo + YReaz +...) | St = 5]
= E[Rer1 +7Gte1 | St = 5]
— E[Rej1 +v(St41) | St = s]




Mathematical
Formulation of v(s) = B [Res1 + 7v(Ses1) | St = 5]
Reinforcement
Learning




Mathematical
Formulation of
Reinforcement

A Markov decision process (MDP) is a Markov reward process with
decisions. It is an environment in which all states are Markov.

Lea mlﬂg A Markov Decision Process is a tuple (S, A, P, R,~)

m S is a finite set of states
m A is a finite set of actions
m P is a state transition probability matrix,
P2, =P[Sty1 =5 | St =5, A = 3
m R is a reward function, R = E[Ri4+1 | St = 5, A: = 2]
m 7 is a discount factor v € [0, 1].
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Mathematical

Formulation of A policy 7 is a distribution over actions given states,
Relnfqrcement r(als) = P[Ar = a | S¢ = s]
Learning

m A policy fully defines the behaviour of an agent
m MDP policies depend on the current state (not the history)

m i.e. Policies are stationary (time-independent),
Ar ~ ﬂ_(|5r).vr > 0




Mathematical

Formu|ation Of The state-value function v.(s) of an MDP is the expected return

starting from state s, and then following policy 7

Reinforcement
Learning Vr(s) = Ex [Ge | S¢ = ]

The action-value function q,(s, a) is the expected return
starting from state s, taking action a, and then following policy m

g-(s,a) =E;[G;: | St =5, Ar = 3]




Mathematical
Formulation of
Reinforcement
Learning:
Optimal value

The optimal state-value function v,(s) is the maximum value
function over all policies

Vi(S) = max V(s)

The optimal action-value function q.(s, a) is the maximum
action-value function over all policies

g«(s,a) = max g, (s, a)
m [ he optimal value function specifies the best possible

performance in the MDP.
m An MDP is “solved” when we know the optimal value fn.



Solving
Reinforcement
Learning:
Bellman eq.

The state-value function can again be decomposed into immediate
reward plus discounted value of successor state,

V’?T(S) =Ex [Res1 + VVW(SHI) | S¢ = ]

The action-value function can similarly be decomposed,

g-(s.a) = E; [Rex1 +792(St+1, At41) | St =5, A = 3]
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Solving
Reinforcement
Learning:
Bellman eq.

Gz (s’ a") v d

Gr(s.3) =RI+7 ) Poy Y 7(dls)ax(s". &)

s'eS a’cA




Solving
Reinforcement
Learning:
Bellman eq.




Solving

Reinforcement
Learning: |
Greedy POllcy r(als) — { 1 ifa= arfenjqax q.(s. a)

0 otherwise

An optimal policy can be found by maximising over g.(s, a),

m [here is always a deterministic optimal policy for any MDP

m If we know g.(s, a), we immediately have the optimal policy
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SOlViﬂg Define a partial ordering over policies
Reinforcement
Learning:

Optimal Policy

For any Markov Decision Process

™ > 7 if ve(s) > ver(s). Vs

m [ here exists an optimal policy w, that is better than or equal
to all other policies, m, > w. V7

m All optimal policies achieve the optimal value function,
v’ﬂ'*(s) — V*(S)

m All optimal policies achieve the optimal action-value function,
G-, (S, a) = q«(s, a)
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Solving
Reinforcement
Learning:
Iterative

evaluation

Policy evaluation Estimate v
lterative policy evaluation

Policy improvement Generate 7’ > 7
Greedy policy improvement

evaluation
m
Yy V
ni—>greedy(V)

improvement
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Reinforcement
Learning and
Deep learning

State

Q Table
State-Action Value

_
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Q Learning

State

Deep Q Learning



Deep Learning,
Reinforcement
Learning:
Function
Approximation

Deep neural network

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

— AN A<
‘-” 5 VN ~>.\ - W ‘\- <777
\ ;/ NS AN AR T output layer
_ NI TR
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Deep Q
Networks:
Dynamic
programming

V(Sf) < Eﬂ- [R;H_]_ -+ '-}IV(SI—F].)]




Deep Q

Networks: V(5:) <+ V(S:) + a (G — V(5))

Monte-Carlo




Deep Q
Networks:
Temporal
Difference

V(St) < V(St) +a(Repr + v V(See1) — V(S))




DQN:

MC-TD
State Elapsed Time Predicted Predicted
€Xam p l € (minutes) Time to Go  Total Time
leaving office 0 30 30
reach car, raining 5 35 40
ex1it highway 20 15 35
behind truck 30 10 40
home street 40 3 43

arrive home 43 0 43




DQN:

MC-T Changes recommended by Changes recommended
exam p | e Monte Carlo methods (a=1) by TD methods (a=1)

45 1
.. actual outcome actual
outcome
, . , 4
Predicted Predicted
total total
travel 35 travel
time time
30 -
T T T T T T T T T T T T
leaving reach exiting 2ndary home arrive leaving reach exiting 2ndary home arrive
office car highway road street home office  car highway road street home

Situation Situation
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Pu rPOSse of Define a partial ordering over policies
Relnfqrcement > 2 i va(s) > var(s). Vs
Learning

For any Markov Decision Process

m [ here exists an optimal policy w, that is better than or equal
to all other policies, m, > w. V7

m All optimal policies achieve the optimal value function,
v’ﬂ'*(s) — V*(S)

m All optimal policies achieve the optimal action-value function,
G-, (S, a) = q«(s, a)
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Reinforcement
Learning
classification

Value Fungtion Policy

Actor
Value-Based -
alue-Base Critic Policy-Based

= Value Function method ™ Policy gradient method
approximates the g-(s.a)  directly calculate the
function using deep policy 7 using deep
neural networks. neural networks.



Reinforcement

Learning
classification:

Actor-critic

Input

Decoder
Critic
Network

Actor-Critic Type #1

Dueling DQN




Dynamic Replication and Hedging:

A Reinforcement Learning Approach
Kolm and Ritter (2019)



Reinforcement
Learning
application:
Problem

Formulation

= Define automatic hedging to be the practice
of using trained RL agents to handle hedging

= With frictions and where only discrete trading
IS possible the goal becomes to minimize
variance and cost

= We will use this to define the reward and the
state of the reinforcement learning.



Reinforcement = We can seek the agent's optimal portfolio as

Learning the solution to a mean-variance optimization
application: problem with risk-aversion k
RL Settings p

9 max (E[WT] — §V[WT])

= where the final wealth W1 is the sum of
individual wealth




Reinforcement
Learning
application:

RL Settings

= We choose the reward in each period to
K
Rt .= 5Wt — E((SWf)z

= Thus, training reinforcement learners with this
kind of reward function amounts to training
automatic hedgers who tradeoff costs versus
hedging variance



Deep Learning
and
Reinforcement
Learning

= For European options, the state must minimally
contain

= (1) the current price of the underlying, St
= (2) the time remaining to expiry, T =T —t>0
= (3) our number of shares n.

* The state is thus naturally an element of

S:=R: xZ={(S,7,n)|S>0,7>0,n¢cZ}.



Deep Learning

and My
Reinforcement S o~
Lea rn i n g | "‘ = delta.hedge.shares

= = option.pnl
== 1 stock.pnl

== stock.pos.shares

value (dollars or shares)
o

= = fotal.pnl
-100 h
I
I
I
\ \
~200 I} o~ |
0 10 20 30 40 50
timestep (D*T)

Figure 1: Stock & options P&L roughly cancel to give the (relatively low
variance) total P&L. The agent's position tracks the delta
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Deep Learning = The RL agent is at a disadvantage: It does not

and know any of the following information:
Reinforcement = the strike price K

S = that the stock price process is a geometric Brownian
Learning: etion

Disadvantage

= the volatility of the price process
= the BSM formula
= the payoff function at maturity
= any of the Greeks
* Thus, it must infer the relevant information,

insofar as it affects the value function, by
interacting with a simulated environment




COnClUd'ng = Reinforcement Learning is much more difficult
Remarks than conventional supervised learning

= Careful settings for reward and environment is
crucial for convergence of RL

= Can be applied to problems that needs to make a
sequence of decisions

= Can observe feedback to state or choice of
actions and this information can be partial and
noisy




