Introduction to Reinforcement Learning
and its Applications to Finance

Financial Engineering, Ajou University
Chanho Min

Contents = Reinforcement Learning Introduction

= Mathematical Formulation of RL
= Value Function and Policy
* Bellman equation

* Deep Q Networks
= Monte-Carlo and Temporal Difference

= Categorization of RL methods

* Finance Example

Reinforcement
_earning
ntroduction

‘0 AlphaGo

Deep Learning

Reinforcement

Learning 7 ki

|ntrOdUCtiOn: F ot / m At each step t the agent:

C 7 - m Executes action A;
omponents =g m Receives observation O

m Receives scalar reward R;

m [he environment:

m Receives action A;
m Emits observation O, 4
m Emits scalar reward R;.1

m t increments at env. step

Reinforcement
Learning
Introduction:
Toy example

Environment Reward

Mathematical
Formulation of

Reinforcement A state S; is Markov if and only if
Learning:
Markov Process

P[Si11 | St] = P[St+1 | S1,--., St

A Markov Process (or Markov Chain) is a tuple (S,P)
m S is a (finite) set of states

m P is a state transition probability matrix,
Pss" — P[St_}_]_ = S! | St — 5]

Mathematical
Formulation of
Reinforcement
Learning:

MRP

A Markov reward process is a Markov chain with values.

A Markov Reward Process is a tuple (S, P, R,~)
m S is a finite set of states

m P is a state transition probability matrix,
Pssr = P[Sti1 =5 | St = 5]

m R is a reward function, Rs = E[R;11 | St = 5]

m 7 is a discount factor, v € [0, 1]

Mathematical

Formulation Of The return G; is the total discounted reward from time-step t.
Reinforcement

Learning Gt = Rey1 +YRey2 + ... :Z'}/kRHkH
k=0

m [he discount v € |0, 1] is the present value of future rewards

m The value of receiving reward R after k + 1 time-steps is 7*R.
m [his values immediate reward above delayed reward.

m 7 close to 0 leads to " myopic” evaluation
m ~ close to 1 leads to "far-sighted” evaluation

Mathematical
Formulation of
Reinforcement

The value function v(s) gives the long-term value of state s

The state value function v(s) of an MRP is the expected return

Lea ming. : starting from state s
Value Function

v(s) =E[G: | St = 5]

Mathematical
Formulation of

Reinforcement .
i Facebook Sleep | g
Learning k-

Mathematical The value function can be decomposed into two parts:
Formulation Of m immediate reward R;.q

Reinforcement m discounted value of successor state yv(S;11)
Learning

v(s) =E[G; | S¢ = s]
=E[Rei1+YRei2 + 7 Regz + o | Se = 5]
=E[Ri11 + v (Rexo + YReaz +...) | St = 5]
= E[Rer1 +7Gte1 | St = 5]
— E[Rej1 +v(St41) | St = s]

Mathematical
Formulation of v(s) = B [Res1 + 7v(Ses1) | St = 5]
Reinforcement
Learning

Mathematical
Formulation of
Reinforcement

A Markov decision process (MDP) is a Markov reward process with
decisions. It is an environment in which all states are Markov.

Lea mlﬂg A Markov Decision Process is a tuple (S, A, P, R,~)

m S is a finite set of states
m A is a finite set of actions
m P is a state transition probability matrix,
P2, =P[Sty1 =5 | St =5, A = 3
m R is a reward function, R = E[Ri4+1 | St = 5, A: = 2]
m 7 is a discount factor v € [0, 1].

Mathematha| Facebook

Formulation of o
Reinforcement
Learning -
A A
Quit Facebook Sleep
R=0 R=-I R=0
Study

R=+10

Mathematical

Formulation of A policy 7 is a distribution over actions given states,
Relnfqrcement r(als) = P[Ar = a | S¢ = s]
Learning

m A policy fully defines the behaviour of an agent
m MDP policies depend on the current state (not the history)

m i.e. Policies are stationary (time-independent),
Ar ~ ﬂ_(|5r).vr > 0

Mathematical

Formu|ation Of The state-value function v.(s) of an MDP is the expected return

starting from state s, and then following policy 7

Reinforcement
Learning Vr(s) = Ex [Ge | S¢ =]

The action-value function q,(s, a) is the expected return
starting from state s, taking action a, and then following policy m

g-(s,a) =E;[G;: | St =5, Ar = 3]

Mathematical
Formulation of
Reinforcement
Learning:
Optimal value

The optimal state-value function v,(s) is the maximum value
function over all policies

Vi(S) = max V(s)

The optimal action-value function q.(s, a) is the maximum
action-value function over all policies

g«(s,a) = max g, (s, a)
m [he optimal value function specifies the best possible

performance in the MDP.
m An MDP is “solved” when we know the optimal value fn.

Solving
Reinforcement
Learning:
Bellman eq.

The state-value function can again be decomposed into immediate
reward plus discounted value of successor state,

V’?T(S) =Ex [Res1 + VVW(SHI) | S¢ =]

The action-value function can similarly be decomposed,

g-(s.a) = E; [Rex1 +792(St+1, At41) | St =5, A = 3]

18

Solving
Reinforcement
Learning:
Bellman eq.

Gz (s’ a") v d

Gr(s.3) =RI+7) Poy Y 7(dls)ax(s". &)

s'eS a’cA

Solving
Reinforcement
Learning:
Bellman eq.

Solving

Reinforcement
Learning: |
Greedy POllcy r(als) — { 1 ifa= arfenjqax q.(s. a)

0 otherwise

An optimal policy can be found by maximising over g.(s, a),

m [here is always a deterministic optimal policy for any MDP

m If we know g.(s, a), we immediately have the optimal policy

21

SOlViﬂg Define a partial ordering over policies
Reinforcement
Learning:

Optimal Policy

For any Markov Decision Process

™ > 7 if ve(s) > ver(s). Vs

m [here exists an optimal policy w, that is better than or equal
to all other policies, m, > w. V7

m All optimal policies achieve the optimal value function,
v’ﬂ'*(s) — V*(S)

m All optimal policies achieve the optimal action-value function,
G-, (S, a) = q«(s, a)

22

Solving
Reinforcement
Learning:
Iterative

evaluation

Policy evaluation Estimate v
lterative policy evaluation

Policy improvement Generate 7’ > 7
Greedy policy improvement

evaluation
m
Yy V
ni—>greedy(V)

improvement

23

Reinforcement
Learning and
Deep learning

State

Q Table
State-Action Value

_

OOOOOOOOOE

Q Learning

State

Deep Q Learning

Deep Learning,
Reinforcement
Learning:
Function
Approximation

Deep neural network

. hidden layer 1 hidden layer 2 hidden layer 3
input layer

— AN A<
‘-” 5 VN ~>.\ - W ‘\- <777
\ ;/ NS AN AR T output layer
_ NI TR

25

Deep Q
Networks:
Dynamic
programming

V(Sf) < Eﬂ- [R;H_]_ -+ '-}IV(SI—F].)]

Deep Q

Networks: V(5:) <+ V(S:) + a (G — V(5))

Monte-Carlo

Deep Q
Networks:
Temporal
Difference

V(St) < V(St) +a(Repr + v V(See1) — V(S))

DQN:

MC-TD
State Elapsed Time Predicted Predicted
€Xam p l € (minutes) Time to Go Total Time
leaving office 0 30 30
reach car, raining 5 35 40
ex1it highway 20 15 35
behind truck 30 10 40
home street 40 3 43

arrive home 43 0 43

DQN:

MC-T Changes recommended by Changes recommended
exam p | e Monte Carlo methods (a=1) by TD methods (a=1)

45 1
.. actual outcome actual
outcome
, . , 4
Predicted Predicted
total total
travel 35 travel
time time
30 -
T T T T T T T T T T T T
leaving reach exiting 2ndary home arrive leaving reach exiting 2ndary home arrive
office car highway road street home office car highway road street home

Situation Situation

30

Pu rPOSse of Define a partial ordering over policies
Relnfqrcement > 2 i va(s) > var(s). Vs
Learning

For any Markov Decision Process

m [here exists an optimal policy w, that is better than or equal
to all other policies, m, > w. V7

m All optimal policies achieve the optimal value function,
v’ﬂ'*(s) — V*(S)

m All optimal policies achieve the optimal action-value function,
G-, (S, a) = q«(s, a)

31

Reinforcement
Learning
classification

Value Fungtion Policy

Actor
Value-Based -
alue-Base Critic Policy-Based

= Value Function method ™ Policy gradient method
approximates the g-(s.a) directly calculate the
function using deep policy 7 using deep
neural networks. neural networks.

Reinforcement

Learning
classification:

Actor-critic

Input

Decoder
Critic
Network

Actor-Critic Type #1

Dueling DQN

Dynamic Replication and Hedging:

A Reinforcement Learning Approach
Kolm and Ritter (2019)

Reinforcement
Learning
application:
Problem

Formulation

= Define automatic hedging to be the practice
of using trained RL agents to handle hedging

= With frictions and where only discrete trading
IS possible the goal becomes to minimize
variance and cost

= We will use this to define the reward and the
state of the reinforcement learning.

Reinforcement = We can seek the agent's optimal portfolio as

Learning the solution to a mean-variance optimization
application: problem with risk-aversion k
RL Settings p

9 max (E[WT] — §V[WT])

= where the final wealth W1 is the sum of
individual wealth

Reinforcement
Learning
application:

RL Settings

= We choose the reward in each period to
K
Rt .= 5Wt — E((SWf)z

= Thus, training reinforcement learners with this
kind of reward function amounts to training
automatic hedgers who tradeoff costs versus
hedging variance

Deep Learning
and
Reinforcement
Learning

= For European options, the state must minimally
contain

= (1) the current price of the underlying, St
= (2) the time remaining to expiry, T =T —t>0
= (3) our number of shares n.

* The state is thus naturally an element of

S:=R: xZ={(S,7,n)|S>0,7>0,n¢cZ}.

Deep Learning

and My
Reinforcement S o~
Lea rn i n g | "‘ = delta.hedge.shares

= = option.pnl
== 1 stock.pnl

== stock.pos.shares

value (dollars or shares)
o

= = fotal.pnl
-100 h
I
I
I
\ \
~200 I} o~ |
0 10 20 30 40 50
timestep (D*T)

Figure 1: Stock & options P&L roughly cancel to give the (relatively low
variance) total P&L. The agent's position tracks the delta

39

Deep Learning = The RL agent is at a disadvantage: It does not

and know any of the following information:
Reinforcement = the strike price K

S = that the stock price process is a geometric Brownian
Learning: etion

Disadvantage

= the volatility of the price process
= the BSM formula
= the payoff function at maturity
= any of the Greeks
* Thus, it must infer the relevant information,

insofar as it affects the value function, by
interacting with a simulated environment

COnClUd'ng = Reinforcement Learning is much more difficult
Remarks than conventional supervised learning

= Careful settings for reward and environment is
crucial for convergence of RL

= Can be applied to problems that needs to make a
sequence of decisions

= Can observe feedback to state or choice of
actions and this information can be partial and
noisy

