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Solving 
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Solving 
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Reinforcement 
Learning



32

Reinforcement 
Learning 
classification

 Policy gradient method 
directly calculate the 
policy     using deep 
neural networks.  

 Value Function method 
approximates the   
function using deep 
neural networks.
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Reinforcement 
Learning
classification:
Actor-critic
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Dynamic Replication and Hedging: 
A Reinforcement Learning Approach

Kolm and Ritter (2019)
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Reinforcement 
Learning 
application:
Problem 
Formulation

▪ Define automatic hedging to be the practice 
of using trained RL agents to handle hedging

▪With frictions and where only discrete trading 
is possible the goal becomes to minimize 
variance and cost

▪ We will use this to define the reward and the 
state of the reinforcement learning.
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▪We can seek the agent’s optimal portfolio as 
the solution to a mean-variance optimization 
problem with risk-aversion κ

▪where the final wealth w_T is the sum of 
individual wealth

Reinforcement 
Learning 
application:
RL Settings
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▪ We choose the reward in each period to 

▪ Thus, training reinforcement learners with this 
kind of reward function amounts to training 
automatic hedgers who tradeoff costs versus 
hedging variance

Reinforcement 
Learning 
application:
RL Settings
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Deep Learning 
and 
Reinforcement 
Learning

▪ For European options, the state must minimally 
contain 

▪ (1) the current price of the underlying,

▪ (2) the time remaining to expiry, 

▪ (3) our number of shares  n.

▪ The state is thus naturally an element of
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Deep Learning 
and 
Reinforcement 
Learning
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Deep Learning 
and 
Reinforcement 
Learning:
Disadvantage

▪ The RL agent is at a disadvantage: It does not 
know any of the following information:

▪ the strike price K

▪ that the stock price process is a geometric Brownian 
motion

▪ the volatility of the price process

▪ the BSM formula

▪ the payoff function at maturity

▪ any of the Greeks

▪ Thus, it must infer the relevant information, 
insofar as it affects the value function, by 
interacting with a simulated environment
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Concluding 
Remarks

▪ Reinforcement Learning is much more difficult 
than conventional supervised learning

▪ Careful settings for reward and environment is 
crucial for convergence of RL

▪ Can be applied to problems that needs to make a 
sequence of decisions

▪ Can observe feedback to state or choice of 
actions and this information can be partial and 
noisy


