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Abstract 

This study examines the directional predictability of stock returns. To predict this directionality, we 

apply a gradient boosting machine learning model comprising a minimal set of covariates. We show 

that the parsimonious measures of past returns, one each for the individual stock of interest and for the 

overall market index, greatly enhance the predictive model fit compared to conventional logit models 

and a benchmark machine learning model. This finding supports the proposition of directional 

predictability advanced in previous literature. We demonstrate that the findings are universal for many 

KOSPI and NASDAQ test stocks. 
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1. Introduction  

Are stock or asset returns predictable? The theoretical answer, based on the efficient 

market hypothesis (EMH), is a definitive no. Although many empirical studies have challenged 

this hypothesis, the countervailing evidence seems weak or problematic to some extent (Choi, 

Jacewitz, and Park 2016). To sidestep this problem, we turn our focus to the signs of daily 

returns, rather than their exact levels. Are the signs predictable? Christoffersen and Diebold 

(2006) explored this problem for U.S. equity returns and concluded that “sign dependence is 

not likely to be found via analysis of sign autocorrelations, runs tests, or traditional market 

timing tests, because of the special nonlinear nature of sign dependence.”  
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The academic exploration of sign predictability is well summarized by Becker and 

Leschinski (2018). Moreover, Leung, Daouk, and Chen (2000) tested the efficacy of trading 

strategies driven by the probabilities estimated from various classification models, with respect 

to the signs of returns. Linton and Whang (2007) also found statistical evidence for directional 

predictability using a graphical device called the quantilogram.   

Notably, most research on sign change has employed several macroeconomic 

covariates or risk measures to predict the signs of returns (Zhong and Enke 2019; Pönkä 2017; 

Wang 2014). By contrast, we consider only the information contained in the returns. If the 

EMH holds, the returns should reflect the effects of all publicly known variables. Specifically, 

we use the current sign and the discounted indices of both individual stock returns and market 

returns. The main research questions are: how and how much do these parsimonious measures 

of history help predict the future direction of individual stock returns? With similar 

conditioning information, Rhee (2021) showed that the return levels are not predictable at all, 

although explainable to a great extent. However, the effect of these measures on the 

predictability of return signs remains unclear. We explore this problem here. 

Recent studies have applied machine learning algorithms to solve economic and 

financial problems. Gogas and Papadimitriou (2021), Varian (2014), and Athey and Imbens 

(2019) provide a great history, perspective, and possibilities in relation to the applicability of 

machine learning in such research. Nonetheless, machine learning remains underutilized in 

economic studies. This is probably because economic researchers are still unfamiliar with the 

machine learning framework, and do not want to sacrifice the advantage of intuitive model 

interpretation through parametric modes only to achieve a mediocre increase in model fit by 

employing complex machine learning models. In this study, using gradient boosting (GB) 

ensemble trees, we demonstrate that the fit actually increases substantially without incurring 

an insurmountable level of difficulty in model interpretation. 

The remainder of this paper is organized as follows. Section 2 describes the data and 

preprocessing of the discounted index of returns. Section 3 briefly introduces the GB tree model. 

Section 4 summarizes the findings regarding the model’s predictive performance and the 

marginal impacts of covariates. Finally, Section 5 presents the conclusions of this paper.  
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2. Data  

Let r(t) be the rate of return on day t for a sample stock. We classify r(t) as a positive 

or negative sign indicator such that: 

S(t) = 1 if r(t)≥0 

= 0 otherwise. 

For example, Figure 1 shows the daily rates of return of Samsung Electronics, which 

is the largest stock by market value on the Korea Stock Price Index (KOSPI), for the period 

January 2011 to December 2020.  

 

Fig. 1 Rates of return for Samsung on the KOSPI 

 

Figure 2 plots the state (or class) variables for the last 100 days. S = 1 (i.e., nonnegative 

returns) comprises approximately 56% of the sample.   

 

  Fig. 2 Sign indicators of daily returns for Samsung on the KOSPI 
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Discrete indicators can be gleaned by a two-state Markov transition model. To show 

that the indicators are random, we first applied a run test for the series. The p-value for the null 

hypothesis of randomness is 0.142. Therefore, the sign series appears almost random at the 5% 

significance level. Table 1 summarizes the cross-tabulation of the daily transition of signs (or 

states).  

 

S(t-1) 

 

down 

(0) 

S(t) 

up  

(1) 

 

All 

down 

(0) 

528 585 1113 

up  

(1) 

585 727 1312 

All 1113 1312 2425 

Table 1 Day-to-day transition of return signs (Samsung) 

Let us preview the prediction of states using GB trees that is explored in the next 

section. The decision tree classifier, which is the building block of the GB model, predicts the 

most frequent class in each circumstance. Therefore, the predicted class becomes 1 for all 

sample cases. Figure 3 shows a decision tree with no covariates other than the current signs. 

Note that the sample sizes are the same as in Table 1.   

 

 

  Fig. 3 Decision tree with no other covariates 
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Therefore, a simple Markov model cannot predict the signs of returns. We need other covariates 

that diversify the conditioning circumstances for the prediction.  

We consider two types of information: what is the sign of the return now and how did 

it end up there? To obtain a parsimonious measure of the latter information, we construct the 

discounted rate of return for an individual stock as follows:  

z𝑡 = ∑ 𝛿𝑡−𝑠𝑡−𝑇
𝑠=𝑡 𝑟𝑠,     (1) 

where 𝛿 ∈ [0,1] refers to the time discount rate to be incorporated in the model. We find that 

𝛿 = 0.90 maximizes the GB model’s predictive fit. A higher z𝑡 implies that the stock is now 

moving upward. Likewise, we construct a discounted stream of market returns (i.e., KOSPI) to 

represent the impact of environments.  

Z𝑡 = ∑ 𝛿𝑡−𝑠𝑡−𝑇
𝑠=𝑡 𝑅𝑠.     (2) 

Then, the problem is reduced to make the following: 

E[𝑠𝑡+1|𝑠𝑡; 𝑧𝑡, Z𝑡].    (3) 

Figure 4 displays shows the discounted stream for a recollection horizon T, set as 30 days. 

 

  Fig. 4 Discounted index of returns. 
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We expect that these variables will affect the transition probability. As such, our model 

is similar to the covariance-dependent Markov models (e.g., Durland and McCurdy 1994) with 

a transition probability contingent on the measure of past returns.  

3. Model  

We now apply the GB regression model (Friedman 2001), which consists of 

bootstrapped data and a set of decision trees. The GB model is an upgraded version of the 

random forest (RF) model (Breiman 1996), and is another class of ensemble machine learning 

algorithms (Soybilgen and Yazgan 2020). To illustrate the model briefly, we consider the 

following mini dataset:  

 

s(t+1) s(t) z(t) Z(t) 

0 0 0.05 0.02 

1 0 -0.01 0.01 

2 0 0.02 0.05 

0 1 -0.05 -0.03 

1 1 0.01 0.01 

1 2 -0.01 0.02 

2 1 0.015 0.03 

2 2 0.01 -0.05 

0 1 -0.02 -0.02 

0 2 -0.03 -0.05 

Table 2 Mini dataset for illustration 

A simple decision tree model finds the best possible big tree that minimizes the 

objective loss function (usually, the cross-entropy function for a discrete choice model). Figure 

5 shows the best tree. As the tree bifurcates, the covariate space is partitioned into subspaces. 

The prediction is calculated based on the most frequent class in the corresponding subspace.  
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Fig. 5 The optimal decision tree for the mini data 

By contrast, the GB and RF models use many weak trees, to avoid overfitting 

(Marquering and Verbeek 2005). Figure 6 depicts a weak tree. The difference between the GB 

and RF models is the method of constructing trees in the forest. While the RF model produces 

many randomized trees at the same time, the GB model sequentially optimizes the next tree (in 

feature and depth) to compensate for the weakness of the existing trees. The optimization is 

guided by an objective loss function’s gradient information. It is well documented that a well-

tuned GB model often outperforms the RF model and conventional parametric models (Rossi 

2018). For details on implementing a GB model, see Natekin and Knoll (2013).  
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Fig. 6 A weak decision tree for the mini data (depth = 2) 

4. Results  

4.1. Hyper-parameters  

Using a grid search over the key hyper-parameters, we find that the model with 220 

trees and a learning rate of 0.015 roughly maximizes the test hit rates while maintaining the 

training hit rates within an acceptable range. Figures 7 and 8 show the contour plots of the hit 

rates for the test (the last 425 observations for Samsung), and training samples (the first 2000 

observations for Samsung), respectively. 

 

Fig. 7 Contour plot of the hit rates for the test sample 
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Fig. 8 Contour plot of the hit rates for the training sample 

 

4.2. Feature importance 

Figure 9 illustrates the feature importance. These statistics represent an increase in the 

cross-entropy loss function when each covariate (or feature) is discarded from the data or 

completely randomized. We find that the effects of the two discounted indices of past returns 

are mostly comparable, while those of the current signs are minor. 

 

 

Fig. 9 Importance of covariates in the loss function  



10 

 

4.3. Model performance 

To demonstrate the model fits, we calculate the in-sample and out-of-sample hit rates. 

The hit rate is 0.624 for the training sample (Table 3) and 0.626 for the test sample (Table 4).  

 Predicted Label 
Hit rate 

True Label 0 1 total 

0 (Down) 379 552 931 40.7% 

1 (Up) 200 869 1069 81.3% 

total 579 1421 2000 62.4% 

Table 3 Training sample hit rates by GB model 

 

 Predicted Label 
Hit rate 

True Label 0 1 total 

0 (Down) 79 103 182 43.4% 

1 (Up) 56 187 243 77.0% 

total 135 290 425 62.6% 

Table 4 Test sample hit rates by GB model 

Note that the in-sample fit has been purposefully compromised to balance the in-

sample and out-of-sample fits. Nevertheless, the GB model outperforms conventional logistic 

regression (in-sample = 0.572, out-of-sample = 0.574). Judging from the confusion matrix of 

the logit model in Table 5, both the qualitative and quantitative fit of the GB model are striking. 

This advantage is probably due to the nonlinearity of the tree-based prediction utilized in the 

GB model.  

 Predicted Label 
Hit rate 

True Label 0 1 total 

0 (Down) 1 181 182 0.6% 

1 (Up) 0 243 243 100.0% 

total 1 424 425 57.4% 

Table 5 Out-of-sample hit rates by logit model 
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As another benchmark, we compare our results with those of Becker and Leschinski 

(2018), who reported the predictive hit rates from various classification models for a long time 

series of U.S. stock market returns (summarized in Table 6).  

 Logistic 

Regression 

Generalized 

Additive 

Model 

Neural 

Network 

Support 

Vector 

Machine 

Random 

Forest 

Boosted 

Tree 

Hit Rate 51.99% 51.35% 50.51% 51.02% 50.51% 50.92% 

No. of 

covariates 

7 10 7 12 13 6 

Table 6 Summary of model comparisons in Becker and Leschinski (2018) 

 

The covariates that Becker and Leschinski (2018) used in the boosted tree model in 

Table 6, which is very similar to our GB model, include self-stock returns, S&P 500 market 

returns, log realized variance, high-low variance, 12-day moving average of binary stock 

returns, and the rate-of-change indicator. The authors found that the logistic model fits the best 

(hit rate = 0.52) for hold-out samples. Although not directly comparable, our GB model 

produces a better fit using less conditioning information. 

 

4.4. Covariates effects   

Finally, we examine the effects of the three covariates in our model. Since the GB 

model is essentially a black box, it is not straightforward to evaluate the marginal effects as in 

a parametric model. However, it is still possible to graphically evaluate the marginal effects 

because of recent advances in data science. Figure 10 shows the partial dependence plot (PDP) 

for the discounted self-index of returns (z). The plot is obtained from the locus of the model 

predictions by only changing the covariate of interest for the given data. In Figure 10, the solid 

line shows the average prediction, and the shaded area shows the variation contingent on the 

values of the other covariates. Interestingly, the self-index seems to decrease the probability of 

having positive signs (1) on the next day’s self-returns, particularly when it is exceptionally 

high (i.e., the right tail). 
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Fig. 10 Marginal effect of discounted self-index of returns (Samsung)  

 

Figure 11 shows the PDP for the discounted market index of returns (Z), which is 

opposite to that for the self-index. The market index seems to substantially increase the 

probability of having positive signs (1) on the next day’s self-returns, particularly when it is in 

an exceptional right tail of the distribution.  
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Fig. 11 Marginal effect of the discounted market index of returns (KOSPI)  

 

Figure 12 shows a sort of inertia in return signs: the signs are passively correlated 

across successive periods when the other covariate effects are controlled for. That is, the 

probability of having positive signs (1) on the next day’s self-returns was slightly higher when 

the current state was positive.  

 

Fig. 12 Marginal effect of the current return signs (Samsung)  



14 

 

Figure 13 shows the interaction PDP for the current state and the discounted self-index. 

Notably, the right-tail effect of the discounted self-index, as in Figure 10, prevails regardless 

of the current state.  

 

Fig. 13 Interaction of covariate effects  

 

5. Conclusion  

In this study, we demonstrated that the GB model can successfully forecast directional 

changes in stock market returns. The model provides superior prediction compared to a 

benchmark model, even though it employs only minimal information about the return signs at 

a certain date and how the stock and market returns have changed up to this point. This superior 

fit is attributable to the nonlinear, and even nonparametric, nature of the tree-based model. 
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Furthermore, we showed that it is easy to interpret the marginal effect of covariates using an 

enhanced visualization toolbox.  

To show the model’s usefulness beyond our sample stock (Samsung in KOSPI), we 

repeated the analysis for several other stocks on the KOSPI and NASDAQ. Table 7 summarizes 

the model fits and feature importance for the test stocks. The sample period is from January 

2015 to December 2020. The out-of-sample hit rates range between 0.54 and 0.63. Furthermore, 

the relative importance of stocks are mostly similar across stocks. 

Interestingly, the PDP shows different effects of the self- and market-index of returns, 

even though the rates of returns react only to exceptional events. Future research can explore 

this, and if possible, further improve the model’s predictability by enclosing another set of 

covariates. 

 

 

Market 

 

Stock 

Prediction Accuracy Feature Importance 

In-sample Out-of-

sample 

Self_index Market_index State(t-1) 

 

 

 

 

KOSPI 

Samsung 

Elec. 

0.624 0.630 0.51 0.47 0.02 

LG  

Chemical 

0.614 0.574 0.49 0.48 0.02 

NAVER 0.654 0.554 0.53 0.43 0.04 

Samsung 

SDI 

0.628 0.589 0.38 0.59 0.03 

Celltrion 0.643 0.584 0.49 0.50 0.01 

Hyundai 

Motors 

0.755 0.567 0.44 0.55 0.01 

 

 

 

 

NASDAQ 

Apple  0.809 0.567 0.49 0.49 0.02 

Microsoft 0.608 0.589 0.43 0.55 0.02 

Amazon 0.795 0.548 0.47 0.52 0.01 

Tesla 0.632 0.537 0.49 0.47 0.04 

Google 0.770 0.542 0.47 0.49 0.04 

Table 7 Summary of the results for other stock returns 
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