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\centering
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\hline

\textbf{Model} & \textbf{Preci & \textbf!

\hline
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Llama 3.2 & \underline{@.3

\hline

\end{tabular}

\label{tab:model_metrics}

\end{table}

\subsection{Visual Question Answering}
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GPT4-0 is tested using OpenIA*s API while Llama 3.2 Vision is used thro
We use both the state of the art GPT4-o0, which is closed-source and has
This latter model can be run in consumer devices with approximately 6GB
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\section{INTRODUCTION}

Deformable object manipulation is a growing field of
Deformable objects are a common occurrence in both ir
Their deformation and varying response to traditiona

One critical aspect of deformable object manipulatior

In this context, computer vision has emerged as a prd
These approaches use vision in combination with othe
However, most proposed methods focus on the grasping
These constraints and their complexity make these mo

This paper explores the application of computer visid
\begin{enumerate}

\i We introduce a two-stage vision-based grasp ve
\ We present HSR-GraspSynth, a synthetic dataset
\item We investigate the integration of Multimodal L
\end{enumerate}
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url = "https://api.deepseek.com/v1l/chat/completions”
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"Content-Type": "application/json" DeepseekAPI% EEI-_g_

Input : txtLtU 2 HEHs!

Output : {H&- &

¥
prompt = f"==F A =: {title}\n\n=ZF i & :\n{content\n\nZ Z: {question}”

data = {
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S
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"title": "Residual Attention Network for Image Classification™,
"content”: "Introduction\n\n[image]\n\nNot only a friendly face but also red color will draw our atten Output Of| A]) ) )
"question™: "0 =29 A Jos RAUIG ", Ol A| =& : Residual Attention

"answer": "0| =22 A I W= CIED ZSULCH:\n\nl. **Residual Attention Network |2 **: 0|0/ A =25 Network for Image Classification
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app = Flask(__name_ )

model_name = "hwnaml129/deepseek-qlora-paper-search

Flask

| web development,
NOoaes One drop at a time

tokenizer = AutoTokenizer.from pretrained(model name)
model = AutoModelForCausallM.from_pretrained(model name)

@app.route(”/generate”, methods=["POST"])
def generate():

data = request.get json()
prompt = data.get("prompt™, "")

inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_new_ tokens=160)

result = tokenizer.decode(outputs[®], skip special tokens=True)
return jsonify({"response”: result})

if _ name I s
app.run{host="0.0.0.0", port=500@)
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