Long term stagnation of Japan and Lessons to Korea

Naoyuki Yoshino

Dean, Asian Development Bank Institute (ADBI) Professor Emeritus, Keio University, Japan nyoshino@adbi.org, yoshino@econ.keio.ac.jp Farhad Taghizadeh-Hesany Assistant Professor Keio University (Economics)

Contents

- I. Three Arrows of Abenomics
- II. Monetary Policy and Fiscal Sustainablility
- III. Critical Assessment and Way Forward
- IV. Conclusion

Sharing development knowledge about Asia and the Pacific Abenomics: 3 Arrows (by Prime Minister)
(1) Aggressive Monetary Policy--Inflation target
(2) Fiscal Consolidations
(3) Growth Strategy

Aggressive Monetary Policy

The government and the Bank of Japan (BOJ) announced the joint statement on overcoming deflation and achieving sustainable economic growth on January 22. The BOJ set the price stability target at 2 percent in terms of the year-on-year rate of change in the consumer price index. The government expects the BOJ to implement aggressive monetary easing to achieve this target at the earliest possible time.

Changes in Japanese GDP

Figure: Trends of the Japanese GDP (1990 - 2014)

Note: For calculating the real GDP, GDP deflator of Japan used. Real GDP is seasonally adjusted by the X-12 quarterly seasonal adjustment method. Source: Nikkei Needs

Target rate of inflation, lower oil price, 2% → lower rate

Causes of Japan's long-term recession

Problem of Vertical IS curve rather than Liquidity trap

Figure: The ineffectiveness of Monetary Policy in Japan

Source: Yoshino and Sakakibara (2002).

Vertical IS curve $y = \alpha - \sigma(i-p) + u_{is}$ (IS equation)

$$m - p = \beta + \phi y - \lambda i + u_{lm}$$
 (LM equation)

Table 5. Empirical result

Sample: 1990Q2-2013Q4

Eq.	Dependent variable	Explanatory Variable	Coefficient	Std. Error	t-Statistic	Prob.
		α	-0.16	0.08	-1.98*	0.049
IS	${\mathcal Y}_t$	$(i-p)_t$	-0.0002	0.0004	-0.53	0.60
		${\mathcal{Y}}_{t-1}$	1.01	0.007	147.63**	0.00
	R-squared= 0.99, adj	usted R-squared=0.99	, Durbin-Watson S	tat.=1.70, Std.	Error of regression=	0.01
		β	0.02	0.19	0.11	0.91
7.7.4	()	${\mathcal Y}_t$	0.70	0.26	2.67**	0.008
LM	$(m-p)_t$	<i>i</i> ,	-0.025	0.009	-2.72**	0.007
		$(m-p)_{t-1}$	0.99	0.006	171.06**	0.00

R-squared= 0.99, adjusted R-squared=0.99, Durbin-Watson Stat.=1.93, Std. Error of regression=0.03

Note: Estimation Method: Iterative Seemingly Unrelated Regression, IS stands for "investment-saving", LM is "liquidity praferencemoney supply". Std. Error is Standard error, Prob. is the probability

Productivity based wage rate

- 1, Seniority wage system of Japan
- 2, Postpone retirement age
 - 1950s, Age 55 → 59
 - 2015, Age 60 or $65 \rightarrow 85$, 88
- 3, Job market for elderly people
- 4, Robot
- 5, Female participation
- 6, Sufficient child care system

Trends in General Account Tax Revenues, Total Expenditures and Government Bond Issues

Increase of Social Welfare Spending

Transfers from central to local governments

Figure: General Account Budget for FY 2015

Expenditures

Note: Units are in billions of yen Source: Ministry of Finance (2013)

Increase of Social Welfare Spending

Figure: Budget Allocation of Central Government (Japan, 1985-2012)

Gross Debt/GDP ratio, 2014 Selected OECD Countries

Japan's Debt /GDP Ratio

1995	2014
95. 1%	229.6%

Greece Debt / GDP Ratio

1995	2014
101.2%	188.7%

Source: OECD Economic Outlook

Holders of Government bonds

Holders of Japanese Government Bonds (JGB)	% of total	Holders of Greek Government Bonds	% of total
Banks and postal savings	45	Overseas investors	33
Life and non-life insur.	20	Domestic investors	21
Public pension funds	10	European Central Bank	18
Private pension funds	4	Bilateral Loans	14
Bank of Japan	8	Social pension funds	6
Overseas investors	5	IMF	5
Households	5	Greek domestic funds	3
Others	3		15

Japanese Debt, 92% are held by Domestic Investors (2014)

HOLDERS	%
Banks and Postal Savings	27.8%
Bank of Japan	21.2%
Life and Non-life Insurances	19.3%
Overseas' Investors	8.5%
Public Pension funds	6.4%
Private Pension Funds	3.4%
General Government	2.6%
Households	2%
Others	1.5%

Stable bond market of Japan

The Difference between Japan and Greece

The Government Bond Markets (Japan and Greece)

Source: Yoshino and Mizoguchi (2013).

Changes in Japan's Money Flow **High Growth Period** Households Savings \rightarrow Corporate \rightarrow Capital Investment Stock S \rightarrow \rightarrow Κ **Recent Period** Corporate Savings \rightarrow Government \rightarrow Elderly people \rightarrow G \rightarrow Social Welfare **Abolish Retirement Age Increase working population** Pension payment will start 65 or later Wage rate be based on marginal productivity SME and Startup business finance 18 Hometown Investment Trust Funds

Asset Price Bubbles of Japan of late 1980s

Land Price of Japan

Figure: Land price and deposit insurance of Japan's (DICJ) financial assistance for banking failures

19

Source: Yoshino, Taghizadeh-Hesary and Nili (2013)

Bank Loan Supply Curve

Revankar and Yoshino (2008)

Excessive Contractionary Monetary Policy

Table: Estimated Loan Supply Function

Dependent Variable (bank loan)	Period I (1982-1989)	Common Coefficient entire period	Period II (1990-1995)
Bank deposit		0.66	
Market share		0.43	
Loan Rate- Call Rate	16.29 (2.61)	()	21.35 (3.03)
Call Rate	8.564 (2.57)		6.755 (2.904)
BIS-ratio		8.66 (2.35)	
Rival Bank's Previous Period Loan	0.07 (3.67)		0.04 (2.33)
Land Price	0.12 (2.56)		-1.76 (-1.45)
Constant		-36.30 (-0.87)	
Adjusted-R ² 0.892. Ha	usman Statistic, CHI-	SOUARE=0.923. P-Valu	e=0.820

Japanese banks loan supply behavior

Excessive Contractionary Monetary Policy

Revankar and Yoshino (2008)

•Effectiveness of the interest rate policy diminished during 1990-1995 compared to 1982-1989.

•BIS capital requirement rule discouraged Japanese banks to lend money to SMEs and start up business and risky sectors.

•During the bubble period increasing of the land price pushed the bank loans upward and as a consequence Japanese banks were willing to lend more.

• Japanese banks decided their bank loans supply by looking at other banks' behaviour, for example Sumitomo bank.

Bank failures (182 banks went into bankrupt)

Four reasons for bank failures in Japan:

(i)Too much concentration on lending to specific sectors (such as the construction and real estate sectors)

(ii)Regional recessions struck regional banks with lending mainly in stressed regions

(iii)Mismanagement and fraudulent lending

(iv)Failure in securities investment and a lack of investment knowledge.

Table 1. Estimates of Optimal Minimum Capital Requirement Ratios for Japan, United States and Canada

(1) Japan	
θ* = -2.20%	1998 Q1 - 2008 Q4
(2) USA	
$\theta^* = +4.42\%$	2002 Q4 - 2007 Q4
θ* = -1.116%	2001 Q1 - 2002 Q4
(3) Canada	
$\theta^* = +0.37\%$	2003 Q1 - 2004 Q4
θ* = +0.96%	2006 Q1 - 2007 Q4

Bank Loans of Japan

SMEs' and Start ups difficulty to raise money

Bank Lending to SMEs

Figure: Access to Finance by SMEs and Large Firms in Japan

Notes: DI = Diffusion index, CY = Commercial year Source: Yoshino and Taghizadeh-Hesary (ADBI WP, Lost Decade of Japan, 2015)

Marginal Productivity of Public Capital (in Japan)

$\mathbf{Period}(\mathbf{FY})$	1956 - 60	1961 - 65	1966 - 70	1971 - 75	1976 - 80	1981 - 85
Direct Effect	0.696	0.737	0.638	0.508	0.359	0.275
Indirect Effect(Private Capital)	0.453	0.553	0.488	0.418	0.304	0.226
Indirect Effect(Labor Input)	1.071	0.907	0.740	0.580	0.407	0.317
Private Capital	0.444	0.485	0.452	0.363	0.294	0.262

$\operatorname{Period}(\mathbf{FY})$	1986 - 90	1991 - 95	1996 - 00	2001 - 05	2006 - 10
Direct Effect	0.215	0.181	0.135	0.114	0.108
Indirect Effect(Private Capital)	0.195	0.162	0.122	0.100	0.100
Indirect Effect(Labor Input)	0.192	0.155	0.105	0.090	0.085
Private Capital	0.272	0.242	0.219	0.202	0.194

Economic Effect of Infrastructure Investment (Manufacturing Industry)

図1 第2次産業における社会資本の生産力効果の変化

(出所) Nakahigashi-Yoshino (2015)

27

Economic Effect of Infrastructure (Services Industry)

(出所) Nakahigashi-Yoshino (2015)

Effectiveness of Public Capital Stock

- "Private capital/Public capital ratio" to "Marginal productivity of Public capital" -

Secondary Industry (Industrial Sector)

0.4 Southern Kanto Marginal Productivity of Public Capital Tokai 0.3 Kinki Chugoku 0.2 Northern Kanto Northern Kyushu Shikoku 0.1 Hokuriku Hokkaido Tohoku Southern Kyushu 0 0.6 0.8 1 (C) 2014 Yoshino & Nakahigashi Private Capital / Public Capital 0.2 0 0.4 1.2 1.4 1.6 29

Thailand (Effectiveness of Infrastructure Investment) Private Public capital capital Direct Indirect effect effect Capital Labor Agriculture, forest, hunting and fishing 1971-0.971 0.778 0.086 0.618 0.074 1980 1981-0.912 0.516 0.107 0.323 0.087 1990 1991-0.859 0.101 0.068-0.059 0.092 2000 2001-0.814 -0.185 0.018-0.293 0.090 2012 Manufacturing 1971-0.710 0.526 0.191 0.111 0.224 1980 1981-0.623 0.426 0.163-0.004 0.266 1990 1991-0.554 0.409 0.135 0.190 0.083 2000 2001-0.631 0.902 0.173 1.081-0.351 2012

Japanese Bullet Train

Japanese Bullet Train Estimation results by group of prefectures

Group Con.

year by year

Y2012 Y2013 270262 253343 80472 69234 Corporate Tax 72330 Corporate Tax 92720 76302 10350 -4772 89082 - Other Taxes 60529 87872 50176 Other Taxes 100341 100707 107805

Note: Numbers for tax revenue amount adjusted for CPI with base year 1982. Pre-shinkansen construction period covers years from 1982 to 1990. Non-affected groups include rest of the prefectures Treated groups: Group 2: Kagoshima, Kumamoto

Group 3: Kagoshima, Kumamoto, Fukuoka

Group 5: Kagoshima, Kumamoto, Fukuoka, Oita, Miyazaki

Group 7: Kagoshima, Kumamoto, Fukuoka, Oita, Miyazaki, Saga, Nagasaki

Group Con.: Kagoshima, Kumamoto, Fukuoka, Yamaguchi, Hiroshima, Okayama, Hyogo, Osaka

Impact of Kyushu Shinkansen Rail on CORPORATE TAX revenue during 1st PHASE OF OPERATION period

{2004-2010}, mln. JPY (adjusted for CPI, base 1982)

1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	2	2	2	2	2	2	2	2	2	2	2	2	2	2
9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	0	0	0	0	0	0	0	0	0	0	0	0	0	0
8	8	8	8	8	8	8	8	9	9	9	9	9	9	9	9	9	9	0	0	0	0	0	0	0	0	0	0	1	1	1	1
2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1	2	3

COMPOSITION OF GROUPS

Variable	Regression 1	Regression 2	Regression 3	Regression 4	Regression 5	Group2	Group5
Treatment2	-4772.54					Kagoshima	Kagoshima
	[-0.2]					Kumamoto	Kumamoto
Number of tax							Fukuoka
payers	5.8952514*	5.8957045*	5.896112*	5.8953585*	5.8629645*	Group3	Oita
	[1.95]	[1.95]	[1.95]	[1.95]	[1.91]	Kagoshima	Miyazaki
Treatment3		-15947.8				Kumamoto	wiyazaki
		[-0.87]				Fukueke	
Treatment5			-13250.4			FUKUUKA	
			[-1.06]				
Treatment7				-6883.09			GroupCon
				[-0.7]		Group7	Kagoshima
TreatmentCon					-28030.8	Kagoshima	Kumamoto
.					[-0.65]	Kumamoto	Fukuoka
Constant	-665679	-665418	-665323	-665358	-658553	Fukuoka	Osaka
	[-1.35]	[-1.35]	[-1.35]	[-1.35]	[-1.32]	Oita	Hyogo
						Miyazaki	Okayama
Ν	799	799	799	799	799		Ukayama
R2	0.269215	0.269281	0.269291	0.269241	0.269779	Saga	Hiroshima
F	1.934589	2.106448	2.074548	2.100607	8.497174	Nagasaki	Yamaguchi

Note: Treatment2 = Time Dummy {1991-2003} x Group2. etc. t-values are in parenthesis. Legend: * p<.1; ** p<.05; *** p<.01. Clustering standard errors are used, allowing for heteroscedasticity and arbitrary autocorrelation within a prefecture, but treating the errors as uncorrelated across prefectures

Impact of Kyushu Shinkansen Rail on CORPORATE TAX revenue during 2nd PHASE OF OPERATION period

{2011-2013}, mln. JPY (adjusted for CPI, base 1982)

9 9 9 9 9 9 9 9 9 9			
	, , ,	0 0	0 0 0
	0 0 0	1 1	1 1 1
2 3 4 5 6 7 8 9 0 1 2 3 5 6 7 8 9 0 1 2 3 4 5 6 7 8	789	0 1	1 2 3

COMPOSITION OF GROUPS

Variable	Regression 1	Regression 2	Regression 3	Regression 4	Regression 5	Group2	Group5
Treatment2	72330.012**					Kagoshima	Kagoshima
	[2.2]					Kumamoto	Kumamoto
Number of tax							Fukuoka
payers	5.5277056***	5.5585431***	5.558603***	5.5706545***	5.9640287***	Group3	Oita
	[3.13]	[3.14]	[3.14]	[3.14]	[3.07]	Kagoshima	Miyazaki
Treatment3		104664.34*				Kumamoto	inguzuna
		[2]				Fukuoka	
Treatment5			82729.673**			TURUURA	
			[2.1]				
Treatment7				80998.365**			GroupCon
				[2.34]		Group7	Kagoshima
TreatmentCon					179632	Kagoshima	Kumamoto
•					[1.58]	Kumamoto	Fukuoka
Constant	-568133.98**	-573747.28**	-574245.87**	-576867.56**	-642138.87**	Fukuoka	Osaka
	[-2.07]	[-2.08]	[-2.08]	[-2.09]	[-2.1]	Oita	Hyogo
						Miyazaki	Okayama
Ν	611	611	611	611	611		Ukayama
R2	0.350653	0.352058	0.352144	0.352874	0.364088	Saga	Hiroshima
F	5.062509	5.486197	5.351791	5.431088	<u> 16.55518</u>	Nagasaki	Yamaguchi

Note: Treatment2 = Time Dummy {1991-2003} x Group2. etc. t-values are in parenthesis. Legend: * p<.1; ** p<.05; *** p<.01. Clustering standard errors are used, allowing for heteroscedasticity and arbitrary autocorrelation within a prefecture, but treating the errors as uncorrelated across prefectures

Expected rates of return on project bonds vs. benchmark yield

	No Efforts	Efforts to improve			
No Efforts	(50, r) Operating Inestors	(50, αr) Operating Investors company			
Efforts to improve	(100, r) Operating company	(100, αr) Operating Investors Company			
Public Private Partnership (PPP)

- (1) Risk sharing between private and public sector
- (2) Incentive cut costs and to increase revenue
 - \rightarrow Avoid political intervention
 - Bonus payment for employees who run infrastructure
- (3) Many projects could be started by PPP → Utilize domestic savings
- → life insurance and Pension funds (long term)
- (4) Indirect Effects are important (tourism, manufacturing, agriculture, services)

Risks Associated with Infrastructure

- 1, Risk sharing between private and public
- 2, too much reliance on overseas' money
 - \rightarrow future burden for the country
- 3, Loans vs Investment
- 4, bankable projects or not ?
- 5, Various Risks (political risk, operational risk, demand risk, ex-post risk, maintenance risk, earthquakes, natural disaster risk)

Population aging (farmers in Japan) Leasing of farm land lands are kept on owned by elderlies

Growth Strategy

1, Make old people to keep on working,

Productivity based wage rate, Not seniority wage system

2, Since Japan's population is aging, the government will encourage greater female participation in the labor force, in part by improving child care facilities.

3, The government will ensure SMEs have access to easy financing for research and development.

4, The farming population is aging and the government will provide sufficient funds to ensure an efficient and competitive agricultural sector. Leasing system of farm land and Hometown Investment Trust Funds

5, Hometown Investment Trust Funds

SMEs, Startup companies, Agricultural farmers, Solar power

Springer Possible Solutions Start up businesses, farmers

Naryski Teshino - Salhoko Kaji - Editori

Hometown Investment Trust Funds

Hometown Investment Trust Funds

A Stable Way to Supply Risk Capital

Yoshino, Naoyuki; Kaji Sahoko (Eds.) 2013, IX, 98 p. 41 illus.,20 illus. in color

Available Formats:

ebook

Hardcover

Springer

Japan, Cambodia Vietnam, Peru 41

Bank-based SME financing and regional financing to riskier borrowers

- 1, Bank Loans to relatively safer borrower
- 2, Hometown Investment Trust Funds/
- E-Finance, Internet financing

Investment in SMEs and start up businesses

Agricultural Funds Beans and Wine

Injection of Private Money by use of Hometown Investment Trust Funds

Wind Power Trust Fund of Japan

Productivity Improvement

Rate of Return on Each Project

Two Types of Investors

1, Community Type Infrastructure

- Hometown Investment Trust Funds
 - Wind power Generator Funds
 - Japanese Wine Fund
 - Local Airport
 - Agricultural Sector

2, Large Projects and Professional Investors

- Pension Funds
- Insurance companies
- Mutual Funds

Brown fields Not green field

Reference: Cargill and Yoshino: "Postal Savings and Fiscal Investment in Japan". Oxford University Press

ADBI Working Paper Series

Optimal Fiscal Policy Rule for Achieving Fiscal Sustainability: A Japanese Case Study

Naoyuki Yoshino, Tetsuro Mizoguchi, and Farhad Taghizadeh-Hesary

Commissions and Fees of Distributors

Necessity for Review of Asset Management Fees

Sales of Financial Products

Source: Yoshino (2013)

Longer term Investment achieves higher rate of return

No transaction during the periodR 28.87= π 10.70+ τ 2.45+ ε 15.72Switching funds every 2.9 yearsR 28.19= π 3.29+ τ 9.86+ ε 15.04Switching funds every 2.5 yearsR 28.19= π 1.33+ τ 11.82+ ε 15.04Switching funds every 2.0 yearsR 27.8= π -0.26+ τ 13.41+ ε 14.65	A₀=100 (Gross return Net return of on investment investors			Sales Charges	Trust s Remunerations		
Switching funds every 2.9 yearsR 28.19= π 3.29+ τ 9.86+ ε 15.04Switching funds every 2.5 yearsR 28.19= π 1.33+ τ 11.82+ ε 	No transaction during the period	R 28.87	=	π 10.70	+	τ 2.45	+	ε 15.72
Switching funds every 2.9 yearsR 28.19= π + τ + ε 15.04Switching funds every 2.5 yearsR 28.19= π + τ + ε 1.3311.8215.04Switching funds every 2.0 yearsR 27.8= π + τ + ε 13.4114.65								
every 2.9 years28.193.299.8615.04Switching funds every 2.5 yearsR 28.19= π 1.33+ τ 11.82+ ε 15.04Switching funds every 2.0 yearsR 27.8= π -0.26+ τ 13.41+ ε 14.65	Switching funds	R	=	π	+	τ	+	ε
Switching funds every 2.5 yearsR 28.19= π 1.33+ τ 11.82+ ε 15.04Switching funds every 2.0 yearsR 27.8= π -0.26+ τ 13.41+ ε 14.65	every 2.9 years	28.19		3.29		9.86		15.04
every 2.5 years28.191.3311.8215.04Switching funds every 2.0 yearsR 27.8= π -0.26+ τ 13.41+ ε 14.65	Switching funds	R	=	π	+	τ	+	ε
Switching funds every 2.0 years $\begin{array}{c c} R & = & \pi & + & \tau & + & \varepsilon \\ 27.8 & & -0.26 & & 13.41 & & 14.65 \end{array}$	every 2.5 years	28.19		1.33		11.82		15.04
every 2.0 years 27.8 -0.26 13.41 14.65	Switching funds	R		π	+	7	+	ع
27.0 0.20 10.71 14.00	every 2.0 years	27.8		-0.26	•	13 41	·	14.65
		27.0		0.20				

Purpose of holding mutual funds (Survey 2014)

USA	(i)	91%	Retirement
	(ii)	49 %	Reduce taxable income
	(iii)	49 %	Emergency
Japan	(i)	36.7%	No specific reason,
			Recommended by retailers
	(ii)	30.4%	Prepare for after retirement
	(iii)	17.7%	Asset Diversification

Period of holding mutual funds

(Survey USA2004, JPN2014)

USA	42 %	Longer than 10years
	27%	6 to 10 years
	27%	1 to 5 years
Japan	40.7%	No specific period
	21.0%	3 years- 5 years
	14.8%	2 years- 3 years

Low Rate of Return of Japan

Figure: Performance of Asset Management

Source: Yoshino (2013)

3. THE REVISED DOMAR CONDITION AND BOHN'S CONDITION COMBININED WITH THE BOND MARKET

The Domar condition and Bohn's condition are often used to determine whether budget deficits are sustainable or not.

The Domar condition is obtained from the government budget constraint as follows.

$$G_t + r_t B_{t-1} = \Delta B_t + T_t$$
 Government Budget Constraint (1)

Equation (1) states that government spending (G_t) + interest payments $(r_t B_{t-1})$ = new issue of government bonds (ΔB_t) + tax revenue (T_t) .

Dividing Equation (1) by GDP (Y_t) and rewriting Equation (1), we get

$$b_t - b_{t-1} = \frac{(r_t - \eta_t)}{1 + \eta_t} b_{t-1} + g_t - t_t$$
 Domar Condition (2)

where $b_t = B_t/Y_t$, $\eta_t = \Delta Y_t/Y_t$, $g_t = G_t/Y_t$, and $t_t = T_t/Y_t$

(

Figure 5: The Real GDP Growth Rate and the Long-term Interest Rate in Japan

$$YD_t = Y_t - T_t + r_t^B B_{t-1} = C_t + S_t$$

where $S_t = \Delta B_t + \Delta M_t + \Delta W_t^D$ (6)

Savings(S_t) = Government bonds(ΔB_t) + money demand (ΔM_t) + domestic deposits(ΔW_t^D).

 $I_t = i_0 - i_1 r_t \qquad \text{Investment Function} \qquad (7) \\ C_t = c_0 + c_1 Y D_t \qquad \text{Consumption Equation}^1 \qquad (8) \\ \Delta W_t^D = d_0 + d_1 Y D_t + d_2 r_t \qquad \text{Deposit equation} \qquad (9)$

From Equations (6)-(9), we have the IS-balance equation. $(1 - c_1)Y_t - c_1r_t^BB_{t-1} + i_1r_t = c_0 + i_0 + G_t - c_1T_t$ IS-Balance (10)

We assume that investment in the private sector will be financed by deposits in the banking sector. For convenience, with regards to the banking sector's behavior, it is simply assumed that savings are used for the purpose of investment.

 $\Delta W_t^D = I_t$ Saving-Investment Equilibrium (11)

By using Equations (10) and (11), we obtain income and the interest rate in the shortrun equilibrium as follows:

$$Y_{t}^{*} = \frac{1}{\Delta} \{ (d_{1} + i_{1})c_{0} + d_{1}i_{0} + i_{1}d_{0} + (d_{1} + i_{1} + d_{1}i_{1})G_{t} - ((d_{1} + i_{1})c_{1} + d_{1}i_{1})T_{t} + ((d_{1} + i_{1})c_{1} + d_{1}i_{1})c_{1} + d_{1}i_{1})r_{t}^{B^{*}}B_{t-1} \}$$
(12)
$$r_{t}^{*} = \frac{1}{\Delta} \{ (1 - c_{1})(i_{0} - d_{0}) - d_{1}(c_{0} + i_{0}) - d_{1}G_{t} + d_{1}T_{t} - d_{1}r_{t}^{B^{*}}B_{t-1} \}$$
(13)
where $\Delta = (1 - c_{1})(d_{2} + i_{1}) - d_{1}i_{1}$ and $r_{t}^{B^{*}} = \frac{G_{t} - T_{t} - b_{0} - \Delta M_{t}}{b_{1} - B_{t-1}}.$

The objective function of the government is set as:

$$L(B_t, Y_t, G_t, T_t, \Delta B_t) = \frac{1}{2} w_1 (B_t - B_t^*)^2 + \frac{1}{2} w_2 (Y_t - Y_t^f)^2 + \frac{1}{2} w_3 (G_t - G_{t-1})^2 + \frac{1}{2} w_4 (T_t - T_{t-1})^2 + \frac{1}{2} w_5 (\Delta B_t - \Delta B_t^*)^2$$
(14)

The government aims to stabilize government debt (B_t) as close as possible to its desired level, with GDP (Y_t) close to the full employment level of GDP (Y_t^f) , and with a smooth change of government spending (G_t) , smooth change of taxation (T_t) , and smooth change of the flow of bonds (ΔB_t) . Here w_i $(i = 1, \dots, 5)$ are the policy weights the government can set.

We minimize the loss from the government's objective function by means of government spending (G_t) and the smooth change of taxation (T_t).

$$\begin{split} \min_{G_t, T_t} L(B_t, Y_t, G_t, T_t, \Delta B_t) \\ &= \frac{1}{2} w_1 (B_t - B_t^*)^2 + \frac{1}{2} w_2 (Y_t - Y_t^f)^2 + \frac{1}{2} w_3 (G_t - G_{t-1})^2 + \frac{1}{2} w_4 (T_t - T_{t-1})^2 \\ &+ \frac{1}{2} w_5 (\Delta B_t - \Delta B_t^*)^2 \end{split}$$

57

The first-order conditions are:

$$\frac{\partial L}{\partial G_t} = w_1 (B_t - B_t^*) \left(\frac{\partial B_t}{\partial G_t}\right) + w_2 \frac{\partial Y_t}{\partial G_t} \left(Y_t - Y_t^f\right) + w_3 (G_t - G_{t-1}) + w_5 (\Delta B_t - \Delta B_t^*) \left(\frac{\partial \Delta B_t}{\partial G_t}\right) = 0^2$$
(15)

$$\frac{\partial L}{\partial T_t} = w_1 (B_t - B_t^*) \left(\frac{\partial B_t}{\partial T_t}\right) + w_2 \frac{\partial Y_t}{\partial T_t} (Y_t - Y_t^f) + w_4 (T_t - T_{t-1}) + w_5 (\Delta B_t - \Delta B_t^*) \left(\frac{\partial \Delta B_t}{\partial T_t}\right) = 0^3$$
(16)

From Equation (15), we obtain our government spending rule.

$$G_t - G_{t-1} = \alpha_1 (B_t - B_t^*) + \alpha_2 (\Delta B_t - \Delta B_t^*) + \alpha_3 (Y_t - Y_t^f)$$

Government Spending Rule (17)

where
$$\alpha_1 = \frac{w_1}{w_3} \left(\frac{B_{t-1}}{b_1 - B_{t-1}} + 1 \right)$$
, $\alpha_2 = \frac{w_5}{w_3} \left(\frac{B_{t-1}}{b_1 - B_{t-1}} + 1 \right)$, $\alpha_3 = -\frac{w_2}{w_3} \left(\frac{(d_1 + i_1) + d_1 i_1}{\Delta} \right)$
 $T_t - T_{t-1} = \beta_1 (B_t - B_t^*) + \beta_2 (\Delta B_t - \Delta B_t^*) + \beta_3 (Y_t - Y_t^f)$
Taxation Rule (18)

where
$$\beta_1 = -\frac{w_1}{w_4} \left(\frac{B_{t-1}}{b_1 - B_{t-1}} + 1 \right)$$
, $\beta_2 = -\frac{w_5}{w_4} \left(\frac{B_{t-1}}{b_1 - B_{t-1}} + 1 \right)$, $\beta_3 = \frac{w_2}{w_4} \left(\frac{(d_1 + i_1)c_1 + d_1i_1}{\Delta} \right)$.
From these two first-order conditions, we can find the relationship between G_t , T_t , $(B_t - B_t^*)$, $(\Delta B_t - \Delta B_t^*)$ and the primary balance.

$$PB_t - PB_{t-1} = (\alpha_1 - \beta_1)(B_t - B_t^*) + (\alpha_2 - \beta_2)(\Delta B_t - \Delta B_t^*) + (\alpha_3 - \beta_3)(Y_t - Y_t^f)$$
(19)

Bohn's Condition

- $PB_t = g_t t_t$ Primary Balance (PB)
- ★ $PB_t = PB_1 + \mu(b_{t-1} b_0)$ Bohn's Rule: Primary Balance improvement Rule at t

$$\sum_{t=1}^{\infty} \frac{PB_t}{(\lambda)^t} = b_0$$

Bohn's Rule satisfied with "transvesarity condition".

Figure 10: Government Expenditure and Tax Revenue

ANALYTICAL FRAMEWORK ON CREDIT RISKS FOR FINANCING SMALL AND MEDIUM-SIZED ENTERPRISES IN ASIA

Naoyuki Yoshino and Farhad Taghizadeh-Hesary*

SMEs in Japan

Source: White Paper on SMEs, Japanese Government, METI, 2011.

Borrower, Lender and Market

Four Accounts by SME

- 1, Account to show Banks
- 2, Account to show tax authority
- 3, His own account
- 4, Account to show his wife

Lack of Data for SMEs

5.B Credit Risk Database of Credit Guarantee

Source: Yoshino (2012).

Analysis of SME credit risk using Asian data

- Selection of the variables
- Principal Component Analysis
- Cluster Analysis

Examined Variable

No.	Symbol	Definition	Category	
1	Equity_TL	Equity (book value)/total liabilities	Levenene	
2	TL_Tassets	Total liabilities/total assets	Leverage	
3	Cash_Tassets	Cash/total assets		
4	WoC_Tassets	Working capital/total assets	Liquidity	
5	Cash_Sales	Cash/net sales		
6	EBIT_Sales	Ebit/sales		
7	Rinc_Tassets	Retained earnings/total assets	Profitability	
8	Ninc_Sales	Net income/sales		
9	EBIT_IE	Ebit/interest expenses	Coverage	
10	AP_Sales	Account payable/sales	A	
11	AR_TL	Account receivable/total liabilities	Activity	

Note: Retained earnings = the percentage of net earnings not paid out as dividends, but retained by the company to be reinvested in its core business or to pay debt. It is recorded under shareholders' equity in the balance sheet. Ebit = earnings before interest and taxes. Account payable = an accounting entry that represents an entity's obligation to pay off a short-term debt to its creditors. The accounts payable entry is found on a balance sheet under current liabilities. Account receivable = money owed by customers (individuals or corporations) to another entity in exchange for goods or services that have been delivered or used, but not yet paid for. Receivables usually come in the form of operating lines of credit and are usually due within a relatively short time period, ranging from a few days to a year.

Cluster analysis: the average linkage method

Dendogram Using Average Linkage

Factor Loadings of Financial Variables after Direct Oblimin Rotation

Variables	Component			
(Financial Ratios)	Z1	Z 2	Z 3	Z4
Equity_TL	0.009	0.068	0.113	0.705
TL_Tassets	-0.032	-0.878	0.069	-0.034
Cash_Tassets	-0.034	-0.061	0.811	0.098
WoC_Tassets	-0.05	0.762	0.044	0.179
Cash_Sales	-0.937	0.021	0.083	0.009
EBIT_Sales	0.962	0.008	0.024	-0.004
Rinc_Tassets	0.014	0.877	0.015	-0.178
Ninc_Sales	0.971	-0.012	0.015	0.014
EBIT_IE	0.035	0.045	0.766	-0.098
AP_Sales	-0.731	-0.017	-0.037	-0.016
AR_TL	0.009	-0.041	-0.104	0.725

Note: The extraction method was principal component analysis, The rotation method was direct oblimin with Kaiser normalization.

Grouping Based on Principal Component (Z1-Z2) and Cluster Analysis

71

Credit Rating for SMEs by Use of SME Database

- 1, Credit Rating is only applicable to large companies
- 2, Credit Rating for SMEs based on SME Data
- 3, Three ranking of SMEs (Asian country) Five ranking of SMEs (Japan's case)
- 4, SME data can produce default risk ratio
- 5, Risk based Interest rate
Financial Education for SMEs Education Program and Textbooks

- 1, Financial Planners Association Individual Borrowing
- 2, Central Bank of Japan
 Text books, Educate School teachers Regional Education Program
 3, Various Financial Associations

Bankers Association, Stock Exchange

References

Yoshino, N. and Hirano (2011), "Pro-cyclicality of Basel Capital Requirement Ratio and Its Impact on Banks", Asian Economics Papers, 10-2, MIT Press.

Yoshino, N, and Hirano (2012), "Counter-cyclical Buffer of the Basel Capital Requirement and Its Empirical Analysis", Chapter 16, Current Developments in Monetary and Financial Law, Volume 6, International Monetary Fund.

Yoshino, N, (2012) "Global "Imbalances and the Development of Capital Flows among Asian Countries", OECD Journal: Financial Market Trends,

Yoshino, N. and S. Kaji (2013) Hometown Investment Trust Funds, Springer Yoshino and Farhad Taghizadeh-Hesary (2014), "Monetary Policy and Lil Price fluctuations Following The Subprime Loan Crisis", International Journal of Economics and Finance, Vol.7, No.3, 2014.

Yoshino, N. and Farhad Tagizadeh-Hesary (2014), "Analytical Framework on Credit Risks For Financing Small and Medium-Sized Enterprises in Asia", Asia-Pacific Development Journal, United Nations UNESCAP, Vol.21, No.2.

Yoshino, N. and Farhad Taghzadeh-Hesary (2014), "An Analysis of Challenges Faced by Japan's Economy and Abenomics", The Japanese Political Economic, Vol.40, 2014.

Yoshino, Mizoguchi, Farhad (2015), "Optimal Fiscal Policy Rule for Achieving Fiscal Sustainability; A Japanese Case Study", No. 531 Asian Development Bank Institute, ADBI, Working paper, June 2015.

References

- McNelis, P and N, Yoshino (2012) "Macroeconomic Volatility under High Accumulation of Government Debt: Lessons from Japan", Advances in Complex Systems, Vol.15, Suppl. No.2, pp.1250057-1-1250057-29.
- Yoshino, N. and T. Mizoguchi (2010) "The Role of Public Works in the Political Business Cycle and the Instability of the Budget Deficits in Japan", Asian Economic Papers, Vol.9, No.1, pp. 94-112.
- Yoshino, N. and T. Mizoguchi (2013a) "Change in the Flow of Funds and the Fiscal Rules Needed for Fiscal Stabilization", Public Policy Review, Vol.8, No.6, pp.775-793.
- Yoshino, N. and T. Mizoguchi (2013b) "Optimal Fiscal Policy Rule to Achieve Fiscal Sustainability: Comparison between Japan and Europe", Presented at Singapore Economic Review Conference 2013.
- Yoshino, N and U. Vollmer (2014) "The Sovereign Debt Crisis: Why Greece, but not Japan?", Asia Europe Journal, June, Vol.12, Iss.3, pp.325-341.

Yoshino, Naoyuki (2010) "Financing Transport Infrastructure Investment", OECD (ed.), Southeast Asian Economic Outlook 2010, OECD Publishing

Yoshino, Naoyuki (2012) "Global Imbalances and the Development of Capital Flows among Asian Countries", OECD Journal: Financial Market Trends, Vol.2012/1, pp.81-112
Yoshino, Naoyuki and Victor Pontines (2015) "The Highway Effect on Public Finance: Case of the STAR Highway in the Philippines", Asian Development Bank Institute (ADBI) Working Paper,

forthcoming

Yoshino, Naoyuki, Victor Pontines and Umid Abidhadjaev (2015) "Impact Evaluation of Infrastructure Provision on Public Finance and Economic Performance: Empirical Evidence from Philippines and Uzbekistan", *Asian Development Bank Institute (ADBI) Working Paper*, forthcoming.