Problem Set 9.8

(Taylor series for f(x) at a) $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$

1. Find the Taylor series for $\sin x$ at $a = \frac{\pi}{3}$.

- (Maclaurin series for f(x)) $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$
- 2. Find the Maclaurin series for $e^x \cos x$ using the Maclaurin series for e^x and $\cos x$.
- 3. Find the Maclaurin series for $\frac{\sin x x + \frac{x^3}{3!}}{x^5}$.

(Binomial series)

$$(1+x)^p = 1 + \binom{p}{1}x + \binom{p}{2}x^2 + \binom{p}{3}x^3 + \cdots,$$

where p is real number and |x| < 1.

4. Find the Maclaurin series for $\sqrt{1+x^2}$ using the Binomial series.

Problem Set 9.9

(Taylor polynomial of order n based at a)

$$P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k$$

(Remainder or error for Taylor series based at a)

$$R_n(x) = \frac{f^{(n+1)}(c)}{(n+1)!} (x-a)^{n+1},$$

where $f(x) = P_n(x) + R_n(x)$ and c is some point between x and a.

(Maclaurin polynomial of order n)

$$P_n(x) = \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^k$$

5. Find the Taylor polynomial of order 2 based at a=1 for $f(x) = \ln(x+2)$.

6. Find the Maclaurin polynomial of order 3 for $f(x) = e^{-3x}$.

- 7. Consider $f(x) = \sqrt{x}$ to approximate $\sqrt{1.1}$.
- (1) Find $P_2(x)$ based at a=1 for f(x).

(2) Use $P_2(x)$ to approximate $\sqrt{1.1}$.

- 8. Consider $f(x) = \sin x$ to approximate $\sin 48^{\circ}$.
- (1) Find $P_3(x)$ based at $a=\frac{\pi}{4}$ for f(x).
- (2) Use $P_3(x)$ to approximate $\sin 48^\circ$.
- (3) Give a good bound for the error of the approximation.