Problem Set 9.8

(Taylor series for $f(x)$ at a) $f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!}(x-a)^{n}$

1. Find the Taylor series for $\sin x$ at $a=\frac{\pi}{3}$.
(Maclaurin series for $f(x)$) $\quad f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}$
2. Find the Maclaurin series for $e^{x} \cos x$ using the Maclaurin series for e^{x} and $\cos x$.
3. Find the Maclaurin series for $\frac{\sin x-x+\frac{x^{3}}{3!}}{x^{5}}$.

(Binomial series)

$$
(1+x)^{p}=1+\binom{p}{1} x+\binom{p}{2} x^{2}+\binom{p}{3} x^{3}+\cdots
$$

where p is real number and $|x|<1$.
4. Find the Maclaurin series for $\sqrt{1+x^{2}}$ using the Binomial series.

Problem Set 9.9

(Taylor polynomial of order n based at a)

$$
P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!}(x-a)^{k}
$$

(Remainder or error for Taylor series based at a)

$$
R_{n}(x)=\frac{f^{(n+1)}(c)}{(n+1)!}(x-a)^{n+1}
$$

where $f(x)=P_{n}(x)+R_{n}(x)$ and c is some point between x and a.
(Maclaurin polynomial of order n)

$$
P_{n}(x)=\sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} x^{k}
$$

5. Find the Taylor polynomial of order 2 based at $a=1$ for $f(x)=\ln (x+2)$.
6. Find the Maclaurin polynomial of order 3 for $f(x)=e^{-3 x}$.
7. Consider $f(x)=\sqrt{x}$ to approximate $\sqrt{1.1}$.
(1) Find $P_{2}(x)$ based at $a=1$ for $f(x)$.
(2) Use $P_{2}(x)$ to approximate $\sqrt{1.1}$.
8. Consider $f(x)=\sin x$ to approximate $\sin 48^{\circ}$.
(1) Find $P_{3}(x)$ based at $a=\frac{\pi}{4}$ for $f(x)$.
(2) Use $P_{3}(x)$ to approximate $\sin 48^{\circ}$.
(3) Give a good bound for the error of the approximation.
