Some existence results of positive solutions for φ -Laplacian systems

Yong-Hoon Lee

Department of Mathematics, Pusan National University, Republic of Korea yhlee@pusan.ac.kr

We consider the existence of positive solutions for the following φ -Laplacian systems;

$$\begin{cases} -\Phi(u')' = h(t) \cdot f(u), & t \in (0,1), \\ u(0) = 0 = u(1), \end{cases}$$
(P)

where $\Phi(u') = (\varphi(u'_1), \dots, \varphi(u'_N))$ with $\varphi : \mathbb{R} \to \mathbb{R}$ an odd increasing homeomorphism, $h : (0,1) \to \mathbb{R}^N$ may be singular at 0 or/and 1 so that h may not be in $L^1(0,1)$. $f \in C(\mathbb{R}^N, \mathbb{R}^N)$ and $x \cdot y := (x_1y_1, x_2y_2, \dots, x_Ny_N)$.

Study of generalized Laplacian problems like (P) with coefficient functions not in L^1 is very rare and even corresponding integral operator is not known yet.

In this talk, under suitable assumptions on φ and h, we drive a new integral operator for problem (P). After proving compactness of the operator, we introduce several existence results of positive solutions for problem (P).