프런티어과학학부 커뮤니티
아주대학교 프런티어과학학부의 새로운 소식입니다.- 공지사항
-
2025.0710
[학부] 2025학년도 2학기 프런티어과학학부 신입생 대상 수강신청 안내
2025학년도 2학기 프런티어과학학부 신입생 대상 수강신청 안내 2025학년도 입학하는 프런티어과학학부 신입생 대상 2학기 수강신청을 아래와 같이 안내하오니 아래의 공지사항을 꼼꼼하게 확인하여 수강신청 해주시기 바랍니다. • 자동수강신청이란? 1학년 교육과정에 포함된 Co-BSM 과목을 모두 이수하여 기초수학능력을 탄탄하게 기를 수 있도록 학교에서 일괄 자동수강신청하는 제도입니다. 자동수강신청된 과목은 학생이 개별적으로 수강신청하지 않아도 됩니다. 단, 자동수강신청된 과목을 학생이 임의로 변경하거나 삭제할 수 없으니 이 점 유의하여 주시기 바랍니다. * CO-BSM: Communication-Basic Science and Mathematics Communication : 대학글쓰기, 영어 등 BSM : 수학, 물리, 화학, 생명과학(생물학) 과목(실험 포함) 1. 적용 대상 : 2025학년도 신입생 2. 자동수강신청 신청 내역 확인 가능 시점 - 2025.07.15(목) 19:00 이후 예정 (예비수강 신청기간: 7.17(목)~7.18(토)(예정) 1학년 개별 수강 신청일 8.7(목)(예정)) ※ 자동수강신청 대상 과목은 학생 본인이 수강정정, 포기 및 삭제할 수 없으므로, 이 점 유의하여 주시기 바랍니다. 3. 대상 과목 : 권장이수교육과정에 해당하는 교과목 (하단 참조) 구분 과목 비고 Co-BSM Co 대학글쓰기 영어 BSM 수학1 물리학 물리학1 물리학2 실험과목 포함 화학 화학1 화학2 생명과학 생물학1 생물학2 4. 상기 과목 중 1학년 교육과정에 포함된 과목은 자동수강신청과 학생 자율수강신청 과목으로 구분되므로, 아래 내용을 참고하여 주시기 바랍니다. 소속 수강신청 구분 과목 비고 프런티어 과학학부 자동수강신청 ‣ 대학글쓰기 학교에서 일괄적으로 자동수강신청 (개별적으로 수강신청 불필요) 학생 자율수강신청 ‣ 과학(물리학, 화학, 생명과학, 실험 포함) 희망하는 전공을 고려하여 학생 스스로 수강신청 가능 ※ 프런티어과학학부는 대학글쓰기 과목은 자동수강신청, 나머지 과학 과목(물리학, 화학, 생명과학, 실험 포함)은 본인이 직접 수강 신청해야 함. 5. 프런티어과학학부 BSM 과학교과목 직접 수강 신청 관련 안내 가. 프런티어과학학부 BSM 과학교과목 직접 수강 신청 과목 목록 교과구분 과목명 개설 학년 및 학기 (해당란에 ‘O’표시) 비고 1학년 1학기 2학기 BSM 기초 필수 수학1 O 자동 수강신청 기초 선택 SET1 물리학 물리학실험 둘 중 1SET만 수강 가능 9개 SET 중 4개 선택 O O 학생이 직접 수강신청 O O O SET2 물리학1 물리학실험1 O O SET3 물리학2 물리학실험2 O O O SET4 화학 화학실험 둘 중 1SET만 수강 가능 O O O SET5 화학1 화학실험1 O O SET6 화학2 화학실험2 O O O SET7 생명과학 생명과학실험 둘 중 1SET만 수강 가능 O O O SET8 생물학1 생물학실험1 O O SET9 생물학2 생물학실험2 O 소계 19학점 나. 프런티어과학학부 BSM 과학교과목 직접 수강 신청시 수강번호 및 시간표 과목명 수강번호 시간표 설문조사 신청인원 배정 정원 합계 물리학 X396, X397 화A금A 16 30 물리학2 X383 화D목C - 55 물리학실험 X369, X370 월3,4 16 30 물리학실험2 X344, X347, X348 월3,4 - 55 화학 X256 화C금C 16 30 화학2 X245 화C금C - 62 화학실험 X236, X237 목2,3 16 30 화학실험2 X209, X210, X211 수2,3/수4,5 - 62 생명과학 X320 월D목D 23 32 생물학2 X307 월D목D - 37 생명과학실험 X316, X317 목8,9 23 32 생물학실험2 X301, X302 월7,8 - 37 ※ 수학2과목 수강을 희망할 경우 X286(공통반, 월A수A) 수강을 권장함 다. 직접수강신청 가능일 1) 예비수강신청일: 7.17(목)~7.18(토)(예정) (전체 학년 대상이라 1학년 배정 정원 미배정) 2) 1학년 수강신청일: 8.7(목)(예정) (8.6(수) 오후 4시 이후 1학년 배정 정원 반영) 3) 전학년 수강신청일: 8.8(금)(예정) (최종 전체 여석 반영, 수강현황에 따라 여석이 없을 수 있음) 라. 프런티어과학학부 2025.2학기 통합시간표 교시 월 화 수 목 금 A 1 A1 A2 물리학 A1 G1 A2 물리학 2 화학실험2 화학실험 B B2 G1 B1 B2 B1 3 물리학실험/ 물리학실험2 C 4 C1 C2 화학/화학2 C1 H1 물리학2 C2 화학/화학2 5 D D2 생명과학/생물학2 H1 물리학2 D1 D2 생명과학/생물학2 D1 6 E 7 E1 생물학실험2 E2 대학글쓰기 E1 I1 E2 대학글쓰기 8 생명과학실험 F F2 I1 F1 F2 F1 9 8. 기타 문의 - 신입생 자동수강신청 : ahsoka@ajou.ac.kr, 031-219-2865 / 2864 - 전공 : 프런티어과학학부 학부 사무실(031-219-2552)
-
2025.0630
[자연대교학팀] 2025학년도 하절기 단축근무 시행 안내(6.30(월)~8.8(금))
-
2025.0617
[예비군연대] '25년 학부생 예비군훈련(기본훈련) 안내
<25년 학부생 예비군 훈련 일정 안내> 예비군법 제 6조 1항 및 공직선거법 제 33조 1항에 따라 대선으로 인하여 9월로 순연된 학부생 예비군훈련(기본훈련) 편성일정 및 관련 안내사항 공지드립니다. 자세한 학과별 편성일정 및 주요사항은 학교 예비군연대 홈페이지 공지사항을 참고바랍니다. 2학기 졸업·휴학·수료·초과학기자를 예상 고려하여 단과대학(과)별 편성 예비군의 최고학년을 훈련일정 후반으로 편성하였으니 양해바랍니다. ↳ 일반 4학년, 건축학&의학 5학년, 약학 6학년 대상 (훈련 D-30~D-23전 소집통지서 발송필요 등 행정소요기간 고려) 훈련일정 변경에 따른 문의사항이 있으시면 * 아주대학교 예비군연대(학군단 1층 104호)☎ 031-219-2218 ~ 9 로 문의하여 주시기 바랍니다.
-
2025.0710
- NEWS
-
2025.0711
아주대·KAIST 연구팀, 사슬구조 양자소재 내 스핀-전하 분리 현상 관측 성공 NEW
아주대 연구진이 그동안 이론적으로는 예측되어왔으나 실제 직접 관찰은 어려웠던 금속 물질에서의 스핀-전하 분리를 처음으로 직접 관찰하는 데 성공했다. 이에 향후 후속 연구를 통해 초전도 현상 규명의 실마리를 얻고, 새로운 양자 정보 소재로도 활용될 수 있을 전망이다. 물리학과 김성헌 교수와 한국과학기술원(KAIST) 현정훈 박사·김용관 교수 공동 연구팀은 1차원 사슬구조 물질 내에서 도체-부도체 전이에 걸쳐 스핀-전하 분리 현상을 관측하는 데 성공했다고 밝혔다. 이번 연구 내용은 ‘준1차원 NbSe3의 전하밀도파 전이에 걸친 밴드 선택적 스핀-전하 분리(Band-selective spin-charge separation across the charge density wave transition in quasi-1D NbSe3)’라는 제목의 논문으로, 미국물리학회가 발간하는 물리학 분야의 저명 학술지 <피지컬 리뷰 레터스(Physical Review Letters)> 최근호에 편집자 추천 논문(Editors’ Suggestion)으로 게재됐다. 전자(Electron, 電子)는 물질의 원자를 구성하며, 음전하를 띄는 기본 입자다. 전자는 전하(charge)와 스핀(spin)이라는 두 대표적 성질을 보인다. 전하는 전기적인 힘을 느낄 수 있게 하는 기본 성질로, 전기가 흐르게 하는 요소다. 스핀은 전자가 스스로 회전하는 것과 같은 양자역학적 성질로, 자석과 같은 자기적 성질을 결정하는 요소다. 전자 사이의 상호작용이 강한 1차원 금속 물질에서는 보통 물질 내의 전자가 페르미 액체 모형을 따르는 것과 다르게, 러틴저 액체 모형을 통해 전자의 움직임을 설명할 수 있을 것으로 예측되어 왔다. 그리고 러틴저 액체 모형에서는 전자가 갖는 대표적인 두 성질인 전하와 스핀에 대한 정보가 독립적으로 거동하는 것과 같은 ‘스핀-전하 분리 현상’이 예측된 바 있다. 이러한 현상은 초전도 현상이 발현되기 전에 나타나는 비(非)페르미 액체 상태를 규명하기 위한 단서를 제공할 뿐 아니라, 스핀과 전하라는 서로 다른 정보를 전달하는 양자 정보 소재로의 응용 가능성이 있어 주목을 받고 있다. 초전도 현상이란 전기 저항이 0이 되는 현상으로, 영하 240˚C 이하의 아주 낮은 온도 등 특정 조건 하에서 나타난다. 초전도체를 이용하면 전력 손실 없이 에너지를 사용할 수 있어, 초전도 현상과 초전도체는 최근 학계와 산업계의 주목을 받아왔다. 양자 정보 소재란 양자 컴퓨터·통신·센서 등에 활용되는 소재다. 차세대 양자 기술은 양자역학 원리를 기반으로 한 새로운 유형의 기술로, 보다 많은 정보를 빠르게 처리할 수 있어 다양한 산업 분야에서 효율성과 생산성을 대폭 증대시킬 수 있다. 이처럼 여러 첨단 분야에 새로운 이해를 제공할 수 있는 것이 바로 ‘스핀-전하 분리 현상’이다. 그러나 이론적인 예측을 통해 전자 거동에 대한 해법이 제시된 것과는 다르게, 실제 물질에서 이 현상을 직접 관측한 사례는 매우 드물다. 스핀-전하 분리 현상은 전자 사이의 강한 상호작용에 의해 나타나는 것으로 예측되어왔으나, 이 ‘강한 상호작용’이 동시에 스핀 정보 움직임의 관측을 방해하기 때문에 그동안 실험적 증거를 찾는 것이 어려웠다. 특히 이상적인 1차원 전자계를 구현하는 것이 어렵고, 나아가 전자 사이의 상호작용 정도를 직접 제어하는 데에도 한계가 있어 지금까지 이에 대한 실험적 증거는 매우 제한적으로 포착되어왔다. 아주대 공동 연구팀은 이러한 어려움을 해결하기 위해 적절한 전자 사이의 상호작용이 존재할 수 있는 소재 물질 후보군을 탐색했다. 연구팀은 세 종류의 1차원 원자사슬로 구성된 니오븀(Nb)-셀레늄(Se) 화합물로 NbSe3 시료를 합성하고 각분해 광전자분광법을 이용한 띠구조 분석을 통해 스핀의 정보와 전하의 정보가 서로 다른 속도로 전달되는 것을 직접 관측하는 데 성공했다. 각분해 광전자분광법은 밝은 빛을 조사했을 때 튀어나오는 광전자의 운동 에너지와 운동량을 분석하는 방법으로 물질 내에서 일어나는 양자 현상을 관측할 수 있는 실험 방법이다. 연구팀은 방사광 가속기에서 마이크로미터(μm, 1μm=0.001mm) 크기로 집광된 강한 자외선을 조사했을 때 방출된 광전자를 분석했다. 이를 통해 화합물 내의 광전자가 튀어나온 자리에 형성된 양전하의 움직임(홀론, Holon)과 각 전자들의 스핀 뒤집힘에 따른 스핀 움직임(스피논, Spinon)이 명확하게 분리되어 거동하는 것을 포착했다. 나아가 1차원 물질에서 자주 나타나는 또 다른 양자 현상인 전하밀도파 발현에 따른 도체-부도체 전이가 일어나는 과정에서도, 스핀과 전자가 분리되어 움직이는 것을 관측하는 데 성공했다. 스핀-전하 분리와 전하밀도파 모두 초전도 특성이 발현되기 이전에 나타날 수 있는 1차원 전자계의 특징적인 양자 현상으로 이들 간의 상호 연관성에 대한 추가적인 연구는 앞으로 초전도 현상의 발현 원리 규명에 중요한 단서를 제공할 것으로 기대된다. 아주대 김성헌 교수(물리학과)는 “1차원 물질의 독특한 환경에서 전하와 스핀에 대한 정보가 독립적으로 전달되는 집단적 거동을 직접 관측한 성과”라며 “앞으로 추가적으로 결정구조나 상호작용 세기의 제어를 통해 초전도 발현 원리 규명의 단서를 찾을 수 있을 것”이라고 전했다. 김 교수는 이어 “기초 물리학의 난제 해결에 더해, 전하와 스핀이라는 독립된 자유도를 이용한 새로운 양자 정보 소재 개발로도 응용범위를 넓힐 수 있을 것”이라고 덧붙였다. 이번 연구는 한국연구재단의 우수신진연구사업, 대학기초연구소(G-LAMP) 사업, 대학중점연구소 사업의 지원을 받아 수행됐다. 온도에 따른 니오븀(Nb)-셀레늄(Se) 화합물(NbSe3) 광전자의 에너지-운동량 분포 실험 결과. 점선은 각각 스핀 움직임(빨간색)과 양전하의 움직임(검정색)의 스펙트럼을 나타낸다. 온도가 상승함에 전하밀도파 갭이 닫히지만 스핀-전하 분리 현상이 유지되는 것을 관측할 수 있다. * 위 그림 : 1차원 금속 물질의 광전자가 방출되는 과정에서 나타나는 스핀-전하 분리 모식도(왼쪽). 서로 다른 속도로 전달되는 스핀 움직임(Spinon)과 양전하 움직임(Holon)의 에너지-운동량 분포 모식도(오른쪽)
-
2025.0708
유영동 교수팀, 차세대 에너지 변환·저장용 핵심 촉매 구조 개발
우리 학교 화학과 유영동 교수팀이 청정 수소를 비롯한 차세대 에너지 변환 및 저장 소자에 핵심적 촉매로 활용될 수 있는 새로운 구조를 개발했다. 유영동 교수팀은 뛰어난 촉매 성능을 지니는 위상 준금속 텅스텐 디텔루라이드(WTe₂) 기반 나노와이어 어레이를 구현할 수 있는 새로운 방법을 개발했다고 밝혔다. 해당 연구는 ‘고효율 수소 발생을 위한 활성 자리가 풍부한 계층적 바일 준금속 WTe₂ 나노와이어 어레이(Active Sites‐Enriched Hierarchical Weyl Semimetal WTe₂ Nanowire Arrays for Highly Efficient Hydrogen Evolution’라는 제목으로 <어드밴스드 사이언스(Advanced Science)>의 7월3일자 표지 논문(Inside Back Cover)으로 게재됐다. 아주대 유영동 교수(위 사진 왼쪽)가 교신저자로, 아주대 박사후연구원 김현경 박사(위 사진 오른쪽)가 제1저자로 참여했다. 텅스텐 디텔루라이드(WTe₂)는 독특한 전자 구조를 갖는 위상 준금속으로, 전도성과 안정성이 우수해 전기화학 촉매로의 활용 가능성이 높다. 그러나 기존의 벌크 텅스텐 디텔루라이드(WTe₂)는 촉매 활성 자리가 부족해 제한된 촉매 성능을 보였다. 이에 아주대 연구팀은 위상 준금속 텅스텐 디텔루라이드(WTe₂)를 나노와이어 형태로 합성하고, 이들의 우수한 전기화학 촉매 성능을 확인했다. 연구팀은 2단계 제작 공정을 기반으로 하는 새로운 합성법을 개발했다. 먼저 전도성 탄소 천에 수직 방향의 텅스텐 산화물 나노와이어 어레이를 직접 합성한 후, 이를 Te 분위기에서 어닐링하여 WTe₂ 나노와이어 어레이를 형성했다. 이러한 구조는 촉매 반응에 필요한 활성 자리를 풍부하게 제공하고 전자 이동 경로를 단축시켜 우수한 촉매 성능을 나타낼 수 있게 한다. 합성된 WTe₂ 어레이는 우수한 Tafel 기울기(44 mV/dec)를 나타내 백금(Pt) 촉매의 대체재로서의 가능성을 보여줬다. 또한 높은 전류 밀도와 낮은 전류 밀도 조건 모두에서 장시간 작동 후에도 초기 성능을 유지하는 높은 내구성을 보여, 실제 응용 가능성을 입증했다. 유영동 아주대 교수는 “위상 준금속의 고유한 전기적 특성과 직접 합성된 나노와이어의 구조적 이점을 결합해, 수소 발생 반응 효율을 획기적으로 향상시킬 수 있었다”라며 “합성된 나노와이어는 차세대 에너지 변환 및 저장을 위한 핵심 소재로 활용될 수 있으며, 합성 공정이 간단하고 확장성이 커서 산업적 활용 측면에서도 높은 잠재력을 지닌다”라고 설명했다. 이번 연구는 G-LAMP 사업, 자율운영중점연구소 사업, 정보통신방송연구개발사업, 신진연구지원사업의 지원을 통해 수행됐다. 유영동 교수팀의 연구 성과가 표지 논문(Inside Back Cover)으로 게재된 <어드밴스드 사이언스(Advanced Science)> 이미지 제공_WILEY VCH
-
2025.0605
생명 이재우 교수팀, 면역계중추 T세포의 장내면역조절 메커니즘 밝힐 新분석법 확립
아주대·워싱턴대 공동 연구팀이 인체 면역계의 중추적 역할을 하며 면역세포를 진두지휘하는 T세포의 장내 면역 환경에서의 조절 메커니즘을 규명하기 위해 새로운 분석법을 확립했다. 이에 앞으로 장내 염증 관련 면역 치료제 개발에 기여할 수 있을 것으로 기대된다. 생명과학과 이재우 교수 공동 연구팀은 장내 T세포 수용체를 분류 및 체계화하는 새로운 분석법을 확립했다고 밝혔다. 해당 내용은 ‘음식물 및 장내 미생물 유래 항원에 의한 T세포 항원 수용체 레퍼토리 조절(A hierarchy of intestinal antigens instructs the CD4+ T cell receptor repertoire)’이라는 제목의 논문으로 면역학 분야 저명 저널 <Immunity>에 5월 게재됐다. 이번 연구에는 아주대 이재우 교수(위 사진 오른쪽)와 미국 워싱턴대(Washington University in St. Louis) 박사후연구원 정지선 박사(위 사진 왼쪽)가 제1저자로 참여했다. 워싱턴대의 치 송 시에(Chyi-Song Hsieh) 의과대학 교수는 교신저자로 함께 했다. 백혈구의 일종인 T세포는 우리 인체의 면역계에서 가장 중추가 되는 세포로, 다른 면역세포들을 진두지휘하는 역할을 한다. 전투의 리더가 외부 침입자를 물리치기 위해 공격 태세를 시의적절하게 조율하는 것처럼, T세포는 감염이나 질병으로부터 인체를 보호하기 위해 유연성과 정확성을 발휘한다. 더불어 기억 능력을 가지고 있어 한 번 침입한 적에 대한 정보는 T세포 면역계에 명확히 각인된다. 그러나 T세포의 수가 많고 다양한 기능을 하고 있어, 개별 T세포에 대한 연구가 한정적으로 이루어져 왔을 뿐 전체적 T세포 메커니즘의 규명은 쉽지 않았다. 이러한 가운데 최근에는 세균이나 바이러스 같은 외부 침입자에 대한 대비뿐만 아니라, 장내 미세환경에 존재하는 잠재적 위험 요소를 관리하는 T세포의 역할이 학계에서 주목을 받고 있다. 특히 우리 몸에 존재하는 T세포의 70~80%가 장내 면역계에 분포한다는 점을 고려하면 T세포가 눈에 띄는 외부의 적보다는, 드러나지 않는 내부의 인자를 조절하는 데에 훨씬 많은 에너지를 소모하는 것으로 볼 수 있다. 우리가 매일 섭취하는 음식물의 항원과 장내에 공생하는 미생물 유래 항원을 관리하는 것이 장내 T세포의 주된 역할이다. TCR 분류 체계. TCR의 항원 특이성은 TCRα 및 TCRβ 사슬의 조합에 의해 결정된다. 연구팀은 TCRβ 사슬이 고정된 실험쥐를 사용해, TCRα 전체(TCRα repertoire)를 분석했다. 실험쥐를 정상 환경(SPF), 무균(GF), 무항원(AF) 환경에 사육함으로써, 분석된 TCR을 자기(self), 음식물(diet), 미생물(microbe)에 의존적인 TCR로 분류 및 체계화했고, 이러한 방식으로 2만개의 TCRα 시퀀스를 분류했다 다양한 음식물과 장내 미생물 유래 항원이 용광로처럼 흐르는 장내 면역 환경은 항원의 양과 다양성 측면에서 매우 복잡하다. 그리고 이 복잡계에서 T세포의 역할은 매우 중요하다. 무해한 음식물 항원과 공생 세균 유래 항원에 대해서는 면역 관용을 유지하면서도, 감염성 병원체에 대해서는 단호하게 대응해야 하기 때문이다. 이것이 바로 T세포의 유연성과 항원 특이적 정확성이다. 만약 음식물에 대한 T세포 면역 관용에 이상이 생기면, 음식물 알레르기나 복강병 같은 질환이 발생할 수 있다. 또한 장내 공생 세균에 대한 면역 관용에 문제가 생기는 경우에도, 염증성 장 질환(Inflammatory Bowel Disease)과 같은 난치성 질환이 유발될 수 있다. 이러한 질환은 우리 몸에 이롭거나, 해가 되지 않는 장내 공생 세균에 대한 염증성 반응이 발생하는 것으로 최근 식습관의 서구화와 함께 발병하는 사례가 늘어나고 있다. 이러한 면역학적 난제를 해결하기 위해서는 T세포의 항원 특이성이, 항원의 용광로라 할 수 있는 장내 면역 환경에서 어떻게 조절되는지를 규명하는 기초 연구가 매우 중요하다. 그러나 장내 면역 환경의 복잡성으로 인해, 이와 관련된 직접적인 연구는 아직 기초적인 수준에 머물러 있다. 이에 아주대학교와 워싱턴대학교 연구팀은 생쥐의 장내 T세포 수용체(T cell receptor, TCR) 연구를 통해 TCR을 자기 항원, 음식물 항원, 미생물 유래 항원에 의존적인 TCR로 각각 분류하는 새로운 연구 체계 확립에 나섰다. T세포 수용체(TCR) 분류를 위해 연구팀은 생쥐를 세 가지 조건에서 사육했다. ▲감염균은 없지만 음식물 및 공생 미생물 유래의 항원이 존재하는 정상 상황(Specific pathogen-free, SPF) ▲여기에서 장내 미생물을 제거한 무균 상황(Germ-free, GF) ▲최종적으로 음식물 항원까지 배제해 외부 항원 노출이 전혀 없는 무항원(antigen-free, AF) 상황이다. 연구팀은 장내 환경에서의 T세포 항원 특이적 반응을 거시적으로는 음식물 및 장내 공생 세균에 대한 전체 TCR 반응의 크기로 추적했고, 미시적으로는 음식물 및 장내 공생 세균에 반응하는 단일 TCR의 반응을 추적할 수 있었다. 이러한 과정을 통해 2만개 상당의 T세포 수용체(TCR)를 분류한 체계 지도가 완성됐다. 더불어 연구팀은 염증성 장 질환의 원인이 되는 T세포 항원 특이성에 대한 심도 있는 분석을 진행했다. 복잡한 조성의 장내 세균 중에서 염증의 원인이 되는 세균 후보를 찾기 위해, 연구진은 장내 세균 및 장내 TCR 간의 복잡한 상호작용에 대해 네트워크 분석을 수행했다. 연구팀은 분석을 통해 생쥐 사료의 구성 성분 중에는 콩단백질이 만성 장내 염증 반응의 항원임을 밝혔다. 면역학적 다양성과 복잡성으로 인해, 장내 염증성 면역 반응의 항원 규명은 매우 어려운 연구주제로 꼽힌다. 이에 음식물 구성 성분별 추적 및 장내 세균과 TCR 간의 네트워크 분석을 활용한 연구 기법은 T세포, 음식물, 그리고 장내 미생물 간의 복잡한 상호작용을 규명하는 데 널리 활용될 수 있을 것으로 기대된다. 이재우 아주대 교수는 “새롭게 제시한 연구 기법은 T세포 수용체의 숲과 나무를 함께 볼 수 있는 분류 체계 방식으로, 장내 염증 상황에서 T세포를 자극하는 음식물 및 장내 공생 세균 유래 항원을 규명하는 데 유용하게 활용될 수 있을 것”이라며 “이러한 기초 연구가 향후 장내 염증·음식물 알레르기 관련 면역 치료제 개발에 필요한 중요한 정보를 제공할 수 있기를 기대한다”라고 말했다. 이 교수는 “기존에 학자들이 분석해온 ‘인체는 살아있는 미생물 배양기’라는 관점에 더해 우리가 먹는 음식이 바로 미생물 배양액이 된다는 점을 이번 연구를 통해 확인할 수 있었다”라며 “앞으로 인간이 섭취하는 음식물이 장내 미생물 및 TCR 반응을 유도하는 원리에 대한 기초 연구가 더욱 요구된다”라고 덧붙였다. 이번 연구는 아주대 자연과학대학 기초과학연구사업 및 우수신진연구자 지원사업의 지원을 받아 수행됐다. 장내 T세포의 항원 특이적 상호작용에 대한 다차원적 분석. 장내 염증 상황에서 장내 세균 TCR과 세균 간의 상호작용을 나타낸다. 각각의 점은 TCR 혹은 세균을 나타내며, 두 점을 이은 선은 정비례 관계(positive corelation)임을 보여준다
-
2025.0711

