아주대학교

검색 열기
통합검색
모바일 메뉴 열기
 
 
 

아주인칼럼

BT-IT 융합기술: Biochip

NEW BT-IT 융합기술: Biochip

  • 박성숙
  • 2008-07-16
  • 49140

지 금까지 선진국들은 오랜 역사 속에서 이루어진 과학적 경험을 기반으로 원천기술을 창출하고 이를 새로운 상품과 서비스에 응용함으로써 새로운 가치를 창조하고 기술과 시장을 석권해 왔다. 이러한 흐름의 하나인 생명공학기술(BT)과 정보통신기술(IT)은 기술 선진국들의 관심을 집중시켰으며, 대규모의 투자를 통하여 이 두 기술의 융합분야인 BT-IT 융합기술분야에 관한 원천기술 개발과 이의 실용화, 그리고 신규시장 창출에 대한 연구가 활발히 진행되고 있다. 이러한 점에서, 생화학적 분석기술과 전자공학기술을 결합한 바이오센서 기술은 단순한 생화학측정의 목적에 더하여 대량검색과 다중진단이라는 관점에서 많은 관심을 끌고 있고, 지금까지의 연구 결과들이 적용되어 현재 DNA칩, 단백질칩과 랩온어칩 등으로 확장 전이되고 있다. 특히 기존의 바이오센서 기술을 이용한 DNA칩, 단백질칩 기술은 그 자체로서도 유망하지만 최근에 들어서는 이러한 기술을 전자소자 기술과 접목하고자 하는 연구가 활발히 시도되고 있다.

이 러한 바이오멤스(MEMS: Micro Electro Mechanical Systems) 기술은 여러 가지 센서들을 집적하거나 액츄에이터와 한 칩으로 통합하여 초소형, 고감도를 달성하려 하는 것으로 휴대형 진단기 및 연구기기의 핵심기술로 응용된다. 이를 통하여 소량의 혈액이나 체액만으로도 단백질, DNA, 면역반응, 세포 등에서 얻어지는 생체정보를 총체적으로 감지하여 건강상태와 질병을 진단할 수 있는 시스템을 구현할 수 있게 된다. 이와 같은 기술은 기존의 임상검사실에서 수행되는 면역 효소법이나 방사선 동위원소에 기반을 둔 측정방법을 대체하게 된다. 이러한 랩온어칩을 통하여 기존의 방법에서 야기되는 비용문제, 폐기물 문제, 검사시간의 지연문제 등을 해결함으로써, 환자의 검사시행 즉시 치료가 가능하게 되는 POCT(Point of Care Testing)개념이 현실화 될 것이다.

 

바 이오칩 연구의 당면 과제는 바이오센서 고유의 장점을 최대한 살리면서 기존의 분석도구와는 분명한 차별성을 갖는 제품의 소형화, 편의성, 정확성, 신뢰성 등을 개선해 나가는 데 있다. 최근의 연구동향은 여러 첨단 학문의 관련 기술이 복합적으로 융합되면서 실용화에 필요한 요소 기술이 접목되고 점점 소형화, 시스템화 되어 가고 있는 것이다. 미국, EU, 일본 등은 소량의 혈액이나 체액만으로도 단백질, DNA, 세포 등 고차원적인 생체정보를 총체적으로 감지하여 질병을 진단할 수 있는 바이오칩을 개발 중에 있고, 한 예로 미국의 ChipRx사에서는 바이오센서와 약물전달시스템을 하나의 모듈로 구현함으로써 인체에 내장하여 생체정보에 따라 약물을 전달할 수 있는 시스템을 개발하고 있다. 국내의 경우, 아주대학교, 한국과학기술원, 포항공대 등이 연구개발을 수행하고 있으며, 연구계의 KIST와 ETRI, 그리고 대기업군의 LG, 삼성 등이 중심이 되어 바이오칩을 개발 중에 있다.

 

분 말사출성형(Powder Injection Molding)이란 금속 혹은 세라믹스 분말을 유기재료로 만들어진 결합제(Binder)와 섞어, 플라스틱 성형에서 발달한 사출성형법을 이용하여 성형을 하고 결합제를 제거한 후 최종적인 소결을 거쳐 금속 제품이나 세라믹스 제품으로 만들어 내는 최신 분말성형기술을 말한다. 분 말사출성형의 특징은 종래의 분말성형이 가진 형상적인 제약을 없애주어 자유로운 3차원 형상을 만들어 낼 수 있으며, 제품의 최종 소결 밀도가 아주 높아 기계적 성질이 높다는 점이다. 분말사출성형에 의해 생산되거나 생산할 수 있는 부품은 거의 제한이 없을 정도로 다양하다. 주로 높은 용융 온도를 가지고 있어 일반적인 가공으로는 성형을 하기 어려운 세라믹스 재료와 초경 재료에 이 기술이 활용되며, 매우 복잡하여 절삭 가공으로 제작하는데 비용이 많이 드는 형상, 또 여러 부품을 조립하여 만들어지는 복잡하고 기능이 다양한 부품 등에도 사용된다. 또한 분말사출성형은 생산성이 매우 높기 때문에 대량 생산되는 부품에 적용하고 있다. 특히 최근 들어 크기가 1/100 mm 수준의 초소형 기계부품 제조에 응용되면서 매우 정밀하고 강도 높은 제품을 생산하는 용도까지 그 활용 범위를 넓혀가고 있다.

 

최 근 들어 이 기술을 가장 활발하게 적용하고자 하는 분야는 단연 반도체 팩키징 분야이다. 점차 반도체 소자들이 고집적도와 고출력화를 향해 개발되고 있는데 가장 문제가 되고 있는 것이 열 방출 문제이다. 엄청나게 발생되는 열을 효율적으로 밖으로 방출하자면 높은 열전도와 실리콘과 같거나 비슷한 열팽창 계수를 가진 재료가 필요하다. 현재 가장 널리 사용되는 재료로서 텅스텐과 구리로 제조되는 금속 기지 금속 복합재료(Metal Matrix Metal Composite)를 사용하고 있는데, 텅스텐을 기지로 하고 있기 때문에 성형이 매우 어렵다. 기존에는 텅스텐과 구리를 사용하여 판재를 만든 후 복잡한 형상은 다른 금속으로 만들어 붙여 제조하기 때문에 원가가 높은 단점이 있었다. 이를 분말사출성형기술을 이용하여 한번에 제조하면 원가 절감과 원하는 자유로운 형상을 쉽게 얻을 수 있다. 향후 분말사출성형기술이 활발하게 전개될 적용 분야는 고강도 초소형 기계부품 생산이다. 높은 강도를 요구하면서 정밀도가 높은 초소형 기계 부품의 대량 생산에 이 기술이 적극적으로 활용될 것으로 예상된다.


기 계공학부 성형가공실험실에서는 분말사출성형기술을 10여년간 집중적으로 연구하고 있다. 주로 재료의 유변학적 물성에 관한 연구와 성형 결함을 없애 정밀도와 생산성을 향상할 수 있는 공정연구를 진행하고 있으며, 산학협력 연구를 통해 분말사출성형기술을 산업체로 이전하고 있다. 분말사출성형 연구는 기계공학, 재료공학, 고분자공학 등 여러 분야의 전문지식이 고루 요구되는 대표적인 학제적 연구분야다. 이러한 제약으로 분말사출성형기술이 현재 국내에 널리 보급되어 있지 못하지만 점차 생산업체가 증가하고 있는 추세이다.


중국의 거대한 제조업에 밀려 국내 제조업의 공동화가 진행되는 실정에서 분말사출성형기술과 같이 복합적이고 고부가가치의 기술이 국내 제조업에 빠르게 보급된다면 국내 제조업이 기술적 우위를 계속 유지할 수 있을 것으로 기대된다.

(아주대학교 산학협력정보지 실사구시 2004년 10월호 발췌)

이전글

뇌신경과학의 현재와 미래

다음글

산학협력이 키워온 NOKIA, 핀란드의 국가경쟁력을 떠받치다