-
우리 학교 윤태광 교수팀이 슈퍼커패시터의 성능과 수명을 획기적으로 개선할 수 있는 천연고무 기반 전해질 첨가제를 개발했다. 친환경·저비용 소재를 활용함으로써 고성능의 에너지 저장 기술 중 하나인 슈퍼커패시터의 지속 가능성을 확보하는 데 중요한 이정표가 될 것으로 기대된다.윤태광 교수(응용화학과·대학원 분자과학기술학과) 연구팀은 바이오 고분자를 활용한 새로운 전해질 첨가제를 개발해 슈퍼커패시터의 성능과 수명을 대폭 향상시키는데 성공했다고 밝혔다. 연구 결과는 ‘바이오 고분자 공액 전해질 첨가제로 안정적인 전극-전해질 계면을 구현한 장수명 슈퍼커패시터(Long-lasting supercapacitor with stable electrode-electrolyte interface enabled by a biopolymer conjugate electrolyte additive)’라는 제목의 논문으로 <에너지 스토리지 머티리얼즈(Energy Storage Materials)> 4월호 온라인판에 게재됐다. 윤태광 교수가 교신저자로, 아주대 이성훈 석박사 통합과정 학생과 박지영 석사과정생 그리고 윤형섭 중앙대 석박사 통합과정 학생이 공동 제1저자로 참여했다. 슈퍼커패시터(supercapacitor)는 무궁한 발전 가능성을 가진 차세대 에너지 저장 기술로, ‘리튬(Li)’을 사용하지 않아 환경친화적인데다 대규모의 전기 에너지를 저장할 수 있다는 점에서 산업계와 학계의 주목을 받고 있다. 고속 충·방전이 가능하고 반영구적 수명을 가져 기존 배터리의 한계를 보완할 수 있는 대안으로 각광받고 있는 것. 현재 전기차와 신재생 에너지 발전 등 여러 분야에서 보조전력으로 활용되고 있으며, 앞으로 더 다양한 분야에서 폭넓게 쓰일 것으로 기대된다. 슈퍼커패시터는 기존의 배터리와 에너지 저장 메커니즘이 다르다. 배터리는 화학 반응을 통해 에너지를 저장해 이온의 확산이 중요한 역할을 하나, 슈퍼커패시터는 전극과 전해질 계면에서의 ‘표면 제어 반응(surface-controlled reaction)’을 통해 에너지를 저장한다. 따라서, 슈퍼커패시터에서는 전극과 전해질 사이 계면에서 일어나는 반응이 전기화학적 성능을 좌우하는 핵심 요소로 작용한다.이러한 이유로 슈퍼커패시터의 성능 향상을 위해서는 전극-전해질 계면의 안정성 확보가 필수적이며, 이를 위한 다양한 연구가 진행되어왔다. 그동안 ▲고분자 코팅 ▲3D 프린팅 기반의 셀프-힐링 잉크 적용 ▲원자층 증착(ALD) 기법을 활용한 표면 개질 등 여러 방법이 시도되어 왔지만 공정 복잡성, 낮은 친환경성, 높은 비용, 대량 생산의 어려움 등으로 인해 상용화에는 한계가 있었다. 특히 고출력 특성을 유지하면서도 장시간 동안 안정적인 계면 특성을 확보하는 것이 중요한 과제다. 전극과 전해질 사이의 계면이 시간이 지남에 따라 불안정해지고, 부반응 부산물이 누적되어 전기화학적 성능이 저하되기 때문이다. 이에 아주대 연구팀은 장기 수명 확보와 안정적인 구동, 친환경성까지 모두 충족하는 고성능 시스템의 개발을 목표로 잡았다.a. 아주대 윤태광 교수팀이 개발한 슈퍼커패시터의 개략도. b. 전극을 나타내는 그림 개략도와 c. 전해질 첨가제 제작 과정을 나타내는 그림 개략도. 천연고무 생산과정에서 버려지는 물질인 콘다구검(gum kondagogu)과 미역에서 추출한 알긴산나트륨(sodium alginate)으로 만들어진 이 첨가제는 저비용·고효율에 친환경적이다 아주대 연구팀은 기존 슈퍼커패시터 시스템의 전극-전해질 계면의 불안정성 문제를 해결하기 위해 친환경적인 천연고무 추출 물질인 콘다고구검(gum kondagogu)과 미역 추출물인 알긴산나트륨(sodium alginate)을 활용한 공액 KS(gum kondagogu/sodium alginate) 첨가제를 개발했다. 이 첨가제는 수계 전해질 내에서 뛰어난 용해도를 자랑하며 이온 전도도와 이동도를 개선해, 기존 전해질 대비 성능을 비약적으로 향상시킨다.특히 황산(H₂SO₄) 기반 전해질에 KS 첨가제를 소량만 추가해도 계면 특성이 크게 향상되었으며, 3만회의 충·방전 후 용량 유지율이 기존 58%에서 93%로 향상되는 성과를 보였다. 이는 전극 표면에 형성된 보호층이 부산물 생성을 억제하고, 이온과 전자의 원활한 이동을 돕기에 가능한 결과다.KS 첨가제 기반 전해질은 기존의 화학 합성 전해질과 비교해 공정이 간단하고 비용이 낮아 산업적 적용 가능성이 높다. 또한 KS 첨가제는 천연 다당류 기반의 바이오 고분자로서 원료가 풍부하고 재활용이 가능하며 가격이 낮아, 대량 생산 및 공정 확대(scale-up)에 용이하다는 점에서 높은 확장성을 가진다. 연구팀은 이번 연구가 차세대 친환경 에너지 저장 장치의 핵심 기술로 자리 잡을 것으로 기대하고 있다. 특히 첨가제와 동일한 바이오 고분자로 제작된 전극은 유연성이 우수하고 대면적 제작이 쉽다는 특성을 지니고 있어 웨어러블 전자기기뿐만 아니라, 대규모 에너지 저장 시스템에도 적용 가능할 것으로 전망된다.윤태광 교수는 “이번 연구를 통해 슈퍼커패시터의 전극-전해질 계면 안정성을 획기적으로 개선함으로써 친환경적이고 산업적으로도 적용 가능한 에너지 저장 기술을 개발했다”라며 “향후 다양한 분야에서의 응용을 통해 후속 연구를 계속 진행할 계획”이라고 말했다.이번 연구는 과학기술정보통신부·한국연구재단, 글래스고 대학교(University of Glasgow) 스타트업 펀드, AMRITA Seed Grant의 지원을 받아 수행됐다.아주대 연구팀이 만든 대면적 KS/CNT 전극의 유연성을 보여주는 이미지. 다양한 기계적 변형에도 손상 없이 구조적 안정성을 유지해, 웨어러블 전자기기 등의 에너지 저장 시스템으로 활용될 수 있을 전망이다 * 위 사진 - 왼쪽부터 아주대 윤태광 교수, 이성훈 석박사 통합과정 학생, 박지영 석사과정 학생 그리고 중앙대 윤형섭 석박사 통합과정 학생
-
201
- 작성자통합 관리자
- 작성일2025-05-08
- 1294
- 동영상동영상
-
- 선택적 원자층 증착(AS-ALD), 기술적 한계 돌파할 핵심 신기술로 업계 주목- 특정 기업 독점 ‘EUV 장비’없이도 패터닝 가능해져, 맞춤형 제작도 가능우리 학교 오일권 교수 공동연구팀이 선택적 원자층 증착을 통해 반도체 공정의 정밀도를 높일 수 있는 기술을 개발했다. 이에 미세화·고집적화가 진행되고 있는 차세대 반도체 소자 분야의 공정에서 중요하게 활용될 수 있을 전망이다. 오일권 교수(지능형반도체공학과·전자공학과)와 삼성종합기술원(Samsung Advanced Institute of Technology, SAIT) 공동 연구팀은 반도체 박막 증착의 정밀도를 높일 수 있는 선택적 원자층 증착 기술을 개발하는 데 성공했다고 밝혔다. 해당 연구는 ‘선택적 원자층 증착을 통한 차세대 전자 소자 개발(Area-Selective Atomic Layer Deposition on Homogeneous Substrate for Next-Generation Electronic Devices)’이라는 제목의 논문으로 저명 학술지 <어드밴스드 사이언스(Advanced Science)> 4월호에 게재됐다. 아주대 지능형반도체공학과 석사과정의 이민정·원병준·임영진 학생이 공동 제1저자로 참여했고, 오일권 교수가 교신저자로 함께 했다. 삼성종합기술원의 김성현·송정규 박사는 공저자로 참여했다. 반도체 공정에서의 선택적 원자층 증착(Area-Selective Atomic Layer Deposition, AS-ALD)이란, 반도체 기판의 특정 표면에서만 증착이 이루어지도록 조절하는 기술이다. 이 기술을 활용하면 반도체 기판의 원하는 위치에, 필요한 물질만을 입힐 수 있다. 기존에 널리 활용되어 온 원자층 증착(Atomic Layer Deposition, ALD) 공정은 기판 전체에 균일한 박막을 형성하는 방식으로, DRAM과 낸드플래시 같은 메모리 그리고 비메모리 반도체(시스템 반도체) 공정에서 널리 활용되고 있다. 그러나 최근 반도체 소자의 미세화와 고집적화가 진행됨에 따라, 공정의 수와 제조 비용을 줄이고 오류 가능성을 낮춰 정밀도와 효율성을 높이기 위해 원하는 영역에만 선택적으로 박막을 형성하는 기술이 필수적으로 요구되고 있다. 이에 선택적 원자층 증착 기술(AS-ALD)이 가장 뜨거운 차세대 반도체 공정의 핵심 기술로 부상해왔다. 기술적 한계에 도달한 반도체 산업의 돌파구가 될 유일무이한 신기술로 주목받고 있는 것. 실제로 선택적 원자층 증착 기술(AS-ALD)을 활용하면, 기존에서 필요로 했던 단위 공정의 스텝을 대거 생략할 수 있어, 제조 비용과 오류 발생을 획기적으로 낮출 수 있다. 또한 그동안 특정 기업이 독점해온 고가의 극자외선(EUV, Extra Ultra Violet) 노광장비 없이도 반도체 패터닝을 가능케 할 수 있다는 점에서, 산업계와 학계의 관심이 집중되어왔다. 또한 선택적 원자층 증착 기술(AS-ALD)을 적용하면, 기존의 기술과 장비로는 구현이 어려웠던 새로운 3차원 미시 반도체 소자의 맞춤형 제작도 가능해진다. 때문에 그동안 학계와 산업계에서는 선택적 원자층 증착 기술(AS-ALD)의 구현을 위한 새로운 방식의 연구를 지속해왔다. 그러나 실제 반도체 양산 공정에서 이 기술을 구현하는 데에는 여러 한계를 보여왔다. 관련 공정에 활용되는 여러 화학 물질과 소재에 따라 선택적 박막 형성의 정밀도가 떨어지거나, 실제 소자에 적용했을 때 전기적 성능이 떨어지는 현상이 나타났기 때문이다.이에 아주대 공동 연구팀은 기존에 DRAM 공정에서 오랜 기간 주로 사용해 온 커패시터(Capacitor)막의 소재 조합인 ZAZ(ZrO2/Al2O3/ZrO2) 구조의 한계를 극복하기 위해, 이 조합에 활용되어온 산화알루미늄(Al2O3)을 누설전류의 경로인 그레인 경계(grain boundary)에만 선택적으로 증착했다. 이를 통해 불필요한 산화알루미늄(Al2O3) 증착을 최소화하고 소자의 성능과 신뢰성을 효과적으로 개선할 수 있는 방법을 연구했다. 투과전자현미경 이미지와 화학 조성 분석을 통해 실제 그레인 경계에 산화알루미늄(Al2O3)이 형성된 것을 통계적으로 확인한 그래프. 산화알루미늄(Al2O3)이 선택적으로 분포함을 확인할 수 있다. b와 c는 그레인 경계에서 떨어진 거리에 따라 Al의 양이 얼마나 있는지 보여주는 그래프다. Al2O3이 그레인 경계에 선택적으로 형성된 것을 확인할 수 있다. 연구팀은 이산화지르코늄(ZrO2) 기판을 활용해 특정 영역에서 선택적으로 증착이 이루어지는 메커니즘을 분석하고, 효과적으로 제어할 수 있는 방법을 실험적으로 입증해냈다. 연구팀은 또한 선택적 원자층 증착을 통해 반도체 소자의 성능을 향상시키는 동시에 불필요한 누설전류를 줄일 수 있음을 확인했다. 이는 DRAM 소자의 저장 효율성을 극대화할 수 있는 가능성을 제시하며, 선택적 증착을 통해 DRAM 소자의 미세화 과정에서 발생할 수 있는 데이터 손실을 최소화할 수 있음을 보여주는 성과다. 때문에 메모리 소자의 저장 성능을 높이는 데 있어 중요한 기술적 의미를 가진다고 볼 수 있다. 오일권 교수는 “‘선택적 원자층 증착’은 반도체 산업의 기술적 한계를 뛰어넘기 위해 꼭 필요로 하는 기술이지만 실제 공정에의 활용에는 여러 난관이 존재해왔다”라며 “이번 연구를 통해 선택적 증착과 제어가 가능함을 실험적으로 입증했다는 점에서, 반도체 공정 기술에 핵심적인 진전이 될 것”이라고 설명했다. 오 교수는 "앞으로 산업적 적용을 위한 추가 연구를 통해 반도체 소자의 성능 향상과 생산 공정의 효율성을 더욱 높일 수 있도록 노력하겠다"라고 덧붙였다.아주대 연구팀은 앞으로 후속 연구를 통해 원자층 증착 공정을 더욱 정밀하게 제어할 수 있는 기술을 개발하고, 산업적 적용 가능성을 검토할 계획이다.* 위 그림 설명 : 아주대 공동 연구팀의 새로운 선택적 원자층 증착(AS-ALD) 공정을 통해 붉은색의 산화알루미늄(Al2O3)이 이산화지르코늄(ZrO2)의 누설전류 경로인 그레인 경계에만 형성된 것을 표현한 그림. 이 기술을 통해 DRAM 소자에서 데이터 손실을 최소화하면서 저장 능력을 극대화할 수 있을 것으로 기대된다.
-
199
- 작성자통합 관리자
- 작성일2025-05-07
- 309
- 동영상동영상
-
- 망막 영상과 인공지능을 결합한 혁신적 진단법 제시- <npj Digital Medicine> 4월 게재우리 학교 소프트웨어학과 김소연·손경아 교수 연구팀이 망막 영상과 인공지능을 결합한 대사증후군 진단 기술을 개발했다. 이에 대사증후군의 보다 쉽고 빠른 진단이 가능해질 전망이다.소프트웨어학과 김소연·손경아 교수팀의 이번 연구 성과는 ‘망막 영상을 이용한 비전 트랜스포머 기반 대사증후군 분류(Vision transformer based interpretable metabolic syndrome classification using retinal Images)’라는 제목의 논문으로 디지털 건강 분야의 세계적 학술지 <npj 디지털 매디슨(npj Digital Medicine, 2023년 IF 12.4, JCR IF 상위 1%)> 4월호에 게재됐다. 이번 연구는 서울대병원 강남센터 최은경·최혁진 교수팀과의 공동 성과다.이번 연구에는 최근 대학원 인공지능학과에서 석사 학위를 받은 이태관 연구원과 소프트웨어학과 김소연 교수가 공동 제1저자로 참여했고, 소프트웨어학과 손경아 교수와 서울대병원 강남센터 최은경 교수가 공동 교신저자로 연구를 주도했다.대사증후군이란 고혈압, 당뇨병, 비만, 고지혈증 같은 질환에 대해 높은 발생률을 보이는 상태를 말한다. 전 세계적으로 대사증후군 유병률은 지속적으로 증가하는 추세다. 공동 연구팀은 건강검진에서 일반적으로 촬영되는 망막 영상을 이용해 영상에서 보이는 특징을 기반으로 대사증후군을 분류하고 진단할 수 있도록 하는 연구를 진행했다. 종합 건강검진에서 촬영한 망막 영상 데이터를 활용하는 비전 트랜스포머(Vision Transformer, ViT) 기반의 인공지능 모델을 개발한 것. 비전 트랜스포머는 이미지 처리를 위해 개발된 첨단 컴퓨터 비전 기술이다. 연구팀은 망막 영상만을 활용한 모델의 테스트 결과 우수한 진단 성능을 보였으며, 나이나 성별과 체질량 지수(BMI)와 같은 간단한 임상 정보를 추가한 경우 더 높은 정확성을 보였다고 밝혔다.연구팀은 더불어 인공지능 모델이 어떤 망막 영상의 특징을 이용해 대사증후군을 진단하는지 시각적으로 제시해, 진단의 신뢰성과 해석 가능성을 높였다. 특히 망막 내 시신경 원반과 주변 혈관의 변형이 대사증후군 진단의 주요 지표임을 밝혀냈다.이번 연구에서 아주대 소프트웨어학과 연구팀은 ▲비전 트랜스포머(Vision Transformer) 기반의 딥러닝 모델 개발 ▲모델 성능 평가 및 최적화 ▲트랜스포머(Transformer) 기반의 설명가능성 기법 및 ‘Shapley Additive Explanations(SHAP)’을 활용한 시각적·통계적 해석을 수행했다. 서울대병원 연구팀은 ▲건강검진 대상자의 망막 영상 및 임상 데이터의 확보 및 전처리 ▲임상적 타당성 검증 및 해석 ▲망막 영상 기반의 해석 결과 임상적 의미 분석을 담당했다.이번 연구는 한국연구재단 우수신진연구사업, 중견연구자 지원사업, 정보통신기획평가원 인공지능융합혁신인재양성 사업의 지원을 받아 수행됐다.연구팀은 이번 성과를 기반으로 의료 인공지능 분야에서 지속적인 협력 연구를 진행하고 있으며, 앞으로 다양한 인종과 지역의 데이터를 활용한 후속 연구를 통해 기술 적용 범위를 더욱 확대할 계획이다.
-
197
- 작성자통합 관리자
- 작성일2025-04-30
- 394
- 동영상동영상
-
- 호흡기 감염병 연구의 새 장- <네이처 커뮤니케이션즈> 게재우리 학교 약학과 김정현 교수 공동 연구팀이 인간 ‘폐’의 면역체계를 모사하는 ‘미니 폐 어셈블로이드’를 개발하는 데 성공했다. 폐 조직의 감염 및 손상 반응을 정밀하게 재현함으로써 난치성 폐 질환용 신약 개발에 기여할 것으로 전망된다. 김정현 교수(사진)는 한국생명공학연구소·국립보건연구원 연구팀과 함께 인간의 폐 조직을 모사한 폐 어셈블로이드를 개발했다고 밝혔다. 해당 연구는 ‘폐 대식세포를 이용한 폐 생체조직시스템 제작 기술(Generation of induced alveolar assembloids with functional alveolar-like macrophages)’이라는 제목의 논문으로 저명 학술지 <네이처 커뮤니케이션즈(Nature communications, 2023년 기준 IF 14.7)> 4월호에 게재됐다. 폐렴 같은 호흡기 감염성 폐 질환은 전 세계적으로 다수의 사망자를 발생시켜왔지만, 인체 폐의 구조와 면역체계를 모사하는 모델이 없어 신약 개발에 어려움을 겪어왔다.이에 아주대 공동 연구팀은 실제 인간의 폐 조직을 모사한 ‘폐 어셈블로이드(iAlvAssemb)’ 개발에 나섰다. 연구팀은 사람 유도만능줄기세포(hPSC)로부터 폐포 상피세포(Alveolar Epithelial Cells)와 대식세포를 각각 유도하고, 이들을 함께 배양해 실제 폐 조직과 유사한 구조와 면역 반응을 구현할 수 있었다. 연구팀이 개발한 폐 어셈블로이드에서는 폐포 상피세포가 분비하는 GM-CSF가 대식세포의 조직 적응을 유도하고, 대식세포가 다시 인터루킨-1β(IL-1β), 인터루킨-6(IL-6) 등을 분비해 상피세포의 surfantant 단백질 발현을 조절하는 양방향 면역-상피 상호작용이 관찰됐다. 이는 인간 폐의 복잡한 면역 미세환경을 정밀하게 재현한 결과로 그 의의가 크다.또한 결핵균(Mycobacterium tuberculosis) 감염 시 대식세포의 감염 민감성, 대식 및 산화지질 흡수, 감염 후 세포 사멸 등 면역 반응이 실제 폐 조직과 유사하게 재현된 점도 주목할 부분이라고 연구팀은 설명했다. 약학과 김정현 교수는 “이번 연구에서 개발한 ‘폐 어셈블로이드’는 실제 사람의 폐와 유사한 구조를 형성할 뿐 아니라, 세균 감염과 염증 및 손상 등 다양한 자극에 대해 서도 실제와 유사한 반응을 나타냈다”라고 설명했다. 이어 “기존 폐 오가노이드 모델의 한계를 극복하고, 면역세포를 포함한 인간 호흡기 조직의 기능을 정밀하게 구현함으로써 앞으로 호흡기 감염병 연구, 신약 효능 평가, 독성 시험 등 다양한 분야에 폭넓게 활용될 수 있을 것으로 기대된다”라고 덧붙였다.한편 이번 논문은 생물학연구정보센터(BRIC)의 ‘한빛사’ 논문으로 선정됐다. 포항공대 생물학연구정보센터(BRIC)는 생명·의과학 분야에서 피인용 지수가 10 이상인 학술지나 그룹별 상위 3% 이내의 세계적인 학술지에 생명과학 분야 논문을 게재한 한국 과학자들을 '한빛사'로 선정해 소개하고 있다. 약학과 김정현 교수 연구팀은 앞으로도 국제 보건을 위협하는 난치성 호흡기 감염병 분야 신약개발을 위해 줄기세포를 이용한 인체 조직 개발 연구를 다각적으로 이어나갈 계획이다. 김정현 교수 공동 연구팀이 연구해온 줄기세포 유래 인간 폐 조직(폐 어셈블로이드, iAlvAssemb)의 개발 모식도
-
195
- 작성자통합 관리자
- 작성일2025-04-23
- 454
- 동영상동영상
-
- 윤종희 교수와 의학과 공동 연구팀 성과- <Sensors and Actuators B: Chemical> 3월호 게재아주대 연구진이 초분광 영상기술과 인공지능을 활용해 위암을 빠르고 정밀하게 진단할 수 있는 기술을 개발했다. 이 기술을 활용하면 생체 조직의 산란과 흡수 같은 광특성을 인공지능을 통해 분석, 별도의 생화학 검사 없이 정밀한 위암 진단이 가능해 위암 치료의 효율성을 높일 수 있을 전망이다. 물리학과 윤종희 교수와 의과대학 노충균(소화기내과학교실)·노진(병리학교실) 교수 공동 연구팀은 초분광 영상기술과 인공지능을 활용해 정밀하고 빠른 위암 진단 기술을 개발했다고 밝혔다. 이번 연구 내용은 ‘초분광 영상 및 인공지능을 활용한 점막하 박리술을 통해 얻은 조직의 위암 진단(Artificial intelligence-based gastric cancer detection in the gastric submucosal dissection method via hyperspectral imaging)’이라는 제목으로, 저명 학술지 <Sensors and Actuators B: Chemical> 3월호에 게재됐다.아주대 대학원 에너지시스템학과의 박인영 석사과정생(현 COSMAX Inc. 연구원)과 아주대 의대 병리학교실의 노진 교수가 공동 제1저자로 참여했고, 아주대 의대 소화기내과학교실의 노충균 교수와 물리학과 윤종희 교수가 공동 교신저자로 함께 했다.현재 위암의 진단은 내시경을 통해 1차로 검진하고, 암으로 의심되는 부위는 위 점막하 박리술을 통해 조직을 확보한 뒤, 해당 조직에 대해 병리조직검사를 수행하는 방식으로 진행되고 있다. 병리조직검사는 여러 단계의 조직 처리 과정이 필요하므로 수일이 소요되고, 환자는 이에 대한 진단 결과를 확인하기 위해 다시 병원을 방문해야 한다. 이에 환자의 편의와 위암 진단 및 치료의 효율성을 높이기 위해 내시경 검사 시에 조직 내 위암의 존재 여부를 빠르게 판단할 수 있는 기술이 필요하다. 그러나 정상 조직과 위암 조직 간의 뚜렷한 차이를 찾기가 쉽지 않아, 내시경 검사 중에 위암의 징후를 정확하게 파악하기가 어렵다. 그동안 위암 조직의 선명한 관찰을 위해 협대역 영상(Narrow Band Imaging), 색소내시경(Chromoscopy) 등이 개발되어 활용되고 있으나, 여전히 정밀한 위암 진단에는 다가서지 못하고 있다. 또 한정된 내시경 검사실 공간과 검사 시간 등의 현실적 문제들로 인해 학계와 의료계에서 실제 의료환경에 적용할 수 있는 기술을 개발하는 데에 어려움을 겪어왔다. 그중 ‘빛’을 활용한 질병 진단 기술은 비침습적이고 안전해 새로운 질병 진단 기술로 많은 연구가 이뤄져 왔다. 덕분에 여러 의미 있는 연구 결과가 나왔지만, 실제 의료환경에 적용할 수 있는 광기술은 여전히 매우 제한적이다. 환자를 진단하고 치료하는 의료 현장에는 여러 공간적·시간적 제약이 존재하기에, 빛을 활용하기 위한 장치인 광학계(optical system)의 크기가 작고 촬영 및 분석이 빠르게 이뤄질 수 있어야 실제 도입이 가능하다. 아주대 공동 연구팀은 이러한 점에 착안해 초분광 영상기술과 인공지능을 활용한 연구에 나섰다. 초분광 영상기술은 빨강·초록·파랑을 측정하는 기존의 컬러 영상기술에 비해 더 많은 색을 정밀하게 측정할 수 있는 기술이다. 사람의 눈으로 볼 수 있는 빨강·초록·파랑의 가시광선 영역뿐 아니라 자외선과 적외선 영역의 빛까지 분해하고 분석할 수 있는 것. 더욱 정밀한 측정이 가능한 특성 덕에 초분광 영상기술은 우주, 국방, 의료를 비롯한 다양한 분야에 적용되어왔는데, 그 정보량이 많아 정밀한 분석에 어려움을 겪어왔다. 아주대 연구팀이 연구해온 초분광 영상 기술을 통한 위암 진단 모식도이러한 부분을 해결하기 위해 인공지능(AI)을 활용해 영상을 분석하려는 시도가 이어져 왔으나, 의료영상 데이터의 경우 인공지능 학습을 위한 정밀한 정답 데이터를 확보하는 것이 매우 어려웠다. 아주대 연구팀은 이러한 한계를 돌파하기 위해, 영상처리 및 정합 기술을 개발해 병리조직검사 데이터와 초분광 영상 데이터를 비교하고 정답 데이터를 확보해 인공지능 모델을 정밀하게 학습시켰다. 연구팀은 초분광 영상기술을 통해 생체 조직의 산란 및 흡수 특성을 측정하고, 정상 조직과 암 조직 등 질병에 따라 변화되는 조직의 광특성을 질병 진단에 활용했다. 윤종희 교수는 “초분광 영상기술과 인공지능을 통해 환자로부터 획득한 조직으로 별도의 생화학 처리 없이 암의 유무를 진단할 수 있음을 보인 성과”라며 “조직 검체 확보와 동시에 수 분 내 암 진단이 가능해 환자 치료에 많은 도움을 줄 수 있을 것”이라고 설명했다.윤 교수는 “위암 이외의 다른 질병에도 적용이 가능해, 그 응용 범위가 더 넓어질 수 있다”라며 “질병 진단에 걸리는 시간을 줄여, 환자의 치료 시간을 단축하고 편의를 높이는 데 기여할 수 있다”라고 덧붙였다.이번 연구에서 물리학과 연구팀은 ▲초분광 영상 기술을 위한 광학계 개발 ▲조직의 광학영상 측정 및 광특성 분석기술 개발 ▲인공지능 모델 구축 등을 수행했고, 의과대학 연구팀은 ▲환자 검체 확보 ▲병리조직검사 ▲의학적 분석 등을 맡아 진행했다. 아주대 물리학과 윤종희 교수는 한국과학기술원(KAIST) 바이오및뇌공학과에서 박사학위를 받고, 한국과학기술원과 영국 캠브리지대학 물리학과에서 박사후연구원으로 의광학(Biomedical optics) 분야를 연구해왔다. 윤 교수는 초분광 영상을 활용한 질병의 진단, 빛의 산란을 통한 미생물 움직임 연구, 인공지능을 활용한 영상분석 기술 등을 연구해 학계와 산업계의 주목을 받아왔다. 특히 기초 학문과 임상 시험을 연계하는 중개 연구(Translational Research)를 통해 의과대학 연구진과 활발한 공동 작업을 벌이고 있다. 이번 연구는 한국연구재단의 우수신진연구사업, G-LAMP 사업 및 한국전자통신연구원의 지원을 받아 수행됐다.정상 조직과 위암 조직의 광특성(산란 및 흡수) 차이. 위암 조직은 특정 파장(540nm)의 빛에서 정상 조직에 비해 산란 및 흡수가 적은 것을 확인함* 위 사진 - 왼쪽부터 물리학과 윤종희 교수, 대학원 에너지시스템학과 박인영 석사졸업생, 의대 병리학교실 노진 교수, 소화기내과학교실 노충균 교수
-
193
- 작성자통합 관리자
- 작성일2025-04-14
- 664
- 동영상동영상